Cantitate/Preț
Produs

Parallel Finite Volume Computation on General Meshes

Autor Yuri Vassilevski, Kirill Terekhov, Kirill Nikitin, Ivan Kapyrin
en Limba Engleză Paperback – 27 iun 2021
This book presents a systematic methodology for the development of parallel multi-physics models and its implementation in geophysical and biomedical applications. The methodology includes conservative discretization methods for partial differential equations on general meshes, as well as data structures and algorithms for organizing parallel simulations on general meshes. The structures and algorithms form the core of the INMOST (Integrated Numerical Modelling Object-oriented Supercomputing Technologies) platform for the development of parallel models on general meshes. 
The authors consider applications for addressing specific geophysical and biomedical challenges, including radioactive contaminant propagation with subsurface waters, reservoir simulation, and clot formation in blood flows.
The book gathers all the components of this methodology, from algorithms and numerical methods to the open-source software, as well as examples of practical applications, in a single source, making it a valuable asset for applied mathematicians, computer scientists, and engineers alike.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 107177 lei  43-57 zile
  Springer International Publishing – 27 iun 2021 107177 lei  43-57 zile
Hardback (1) 107762 lei  43-57 zile
  Springer International Publishing – 27 iun 2020 107762 lei  43-57 zile

Preț: 107177 lei

Preț vechi: 130703 lei
-18% Nou

Puncte Express: 1608

Preț estimativ în valută:
20514 21380$ 17077£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030472344
ISBN-10: 3030472345
Ilustrații: XV, 186 p. 98 illus., 87 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.29 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

Chapter 1 - Introduction.- Chapter 2 - Monotone finite volume method on general meshes.- Chapter 3 - Application of MFV in reservoir simulatio.- Chapter 4 - Application of FVM in modelling of subsurface radionuclide migration.- Chapter 5 - Application of MFV in modelling of coagulation of blood flow.- Chapter 6 - INMOST platform technologies for numerical model development.

Notă biografică

A corresponding member of the Russian Academy of Sciences, Professor Yuri Vassilevski is the Deputy Director of the Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; the Head of the Department of Computational Technologies and Modelling in Geophysics and Biomathematics at Moscow Institute of Physics and Technology; the Head of the Laboratory of Mathematical Modelling in Medicine at Sechenov Univiersity, Professor at Lomonosov Moscow State University; Managing Editor of the Russian Journal of Numerical Analysis and Mathematical Modelling; Editor of the International Journal for Numerical Methods in Biomedical Engineering and the Journal on Computational Mathematics and Mathematical Physics, and a reviewer for over twenty scientific journals including the Journal of Computational Physics, Computer Methods in Applied Mechanics and Engineering, and the SIAM Journal on Scientific Computing. He was the PIin the Russian Science Foundation Project “Multiscale modeling of blood flow system in personalized medical technologies of cardiology, vascular neurology, oncology,” 2014–2018 (25 researchers), and in the ExxonMobil-INM Project “Parallel iterative solution of linear systems on multi-core clusters,” 2013–2017 (9 researchers). He is the author or co-author of over one hundred journal papers, three monographs, and two textbooks. His research interests include the theory of quasi-optimal meshes, mesh generation and adaptation, iterative methods for PDEs, discretization methods for PDEs, reservoir simulation, computational fluid dynamics, and computational hemodynamics.

Dr. Kirill Terekhov is a Researcher at the Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, and former postdoctoral scholar at Stanford University. He was the main developer of the INMOST library, reservoir simulator, and free-surface flow solver. He is a reviewer for several scientific journals including Advances in Water Resources, Journal of Computational Physics, Computational Geosciences, etc. He is the author or co-author of over twenty papers and one monograph. His research interests include reservoir simulation, computational fluid dynamics, discretization schemes, multiphase flows, and free-surface flows.

Dr. Kirill Nikitin is a Senior Researcher at the Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, and a reviewer for the Journal of Computational Physics, Journal of Computational Geosciences, and Russian Journal of Numerical Analysis and Mathematical Modelling. He is the PI in the Russian Science Foundation project “New numerical models and methods for solving the multi-physical problems of effective oil and gas recovery and safe disposal of radioactive waste” (2018-2021), and other completed projects based on Russian Foundation for Basic Research grants (2015–2016, 2012–2013), Russian President grants (2013–2014, 2017-2018), and Russian Ministry of Education and Science contract (2011–2013). He is the author or co-author of over twenty journal papers. His research interests include reservoir simulation, computational fluid dynamics, discretization schemes, multiphase flows, and free-surface flows.

Dr. Ivan Kapyrin is a Senior Researcher at the Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Laboratory Head at the Nuclear Safety Institute of the Russian Academy of Sciences; and an Associate Professor at the Moscow Institute of Physics and Technology. He is the Leader of GeRa hydrogeological software development, a code designed for modelling groundwater flow and radionuclide transport in geological media (ca. 15 researchers involved). He is the co-author of the GEOPOLIS numerical model for the deep well radioactive waste injection site “Zheleznogorskii”. He is the author or co-author of over ten journal papers and one textbook. His research interests include groundwater flow and transport modelling, discretization methods for PDEs and site applications of hydrogeological models.

Textul de pe ultima copertă

This book presents a systematic methodology for the development of parallel multi-physics models and its implementation in geophysical and biomedical applications. The methodology includes conservative discretization methods for partial differential equations on general meshes, as well as data structures and algorithms for organizing parallel simulations on general meshes. The structures and algorithms form the core of the INMOST (Integrated Numerical Modelling Object-oriented Supercomputing Technologies) platform for the development of parallel models on general meshes. 
The authors consider applications for addressing specific geophysical and biomedical challenges, including radioactive contaminant propagation with subsurface waters, reservoir simulation, and clot formation in blood flows.
The book gathers all the components of this methodology, from algorithms and numerical methods to the open-source software, as well as examples of practical applications, ina single source, making it a valuable asset for applied mathematicians, computer scientists, and engineers alike.

Caracteristici

Presents an automatic differentiation approach to the solution of nonlinear systems arising after discretization of multi-physics problems Introduces the English-speaking world to the authors’ innovative toolkit for parallel model development, the INMOST platform Demonstrates how the methodology can be applied to overcome topical geophysical and biomedical challenges