Parameter Estimation in Stochastic Differential Equations: Lecture Notes in Mathematics, cartea 1923
Autor Jaya P. N. Bishwalen Limba Engleză Paperback – 12 oct 2007
Din seria Lecture Notes in Mathematics
- 17% Preț: 360.42 lei
- Preț: 119.36 lei
- Preț: 452.22 lei
- Preț: 175.68 lei
- Preț: 197.00 lei
- Preț: 279.76 lei
- Preț: 477.65 lei
- 17% Preț: 361.88 lei
- Preț: 252.37 lei
- Preț: 348.09 lei
- Preț: 138.88 lei
- Preț: 152.61 lei
- Preț: 116.67 lei
- Preț: 102.77 lei
- Preț: 119.02 lei
- 17% Preț: 365.52 lei
- Preț: 396.75 lei
- 17% Preț: 362.12 lei
- Preț: 396.11 lei
- Preț: 357.78 lei
- 17% Preț: 362.31 lei
- Preț: 403.80 lei
- 17% Preț: 361.70 lei
- Preț: 491.51 lei
- Preț: 449.38 lei
- Preț: 395.90 lei
- Preț: 177.41 lei
- Preț: 416.91 lei
- Preț: 479.40 lei
- Preț: 479.40 lei
- Preț: 325.04 lei
- Preț: 320.31 lei
- Preț: 344.45 lei
- Preț: 325.78 lei
- Preț: 401.54 lei
- Preț: 322.79 lei
- Preț: 414.21 lei
- Preț: 271.40 lei
- Preț: 417.49 lei
- Preț: 414.97 lei
- Preț: 496.52 lei
- Preț: 414.97 lei
- Preț: 270.27 lei
- Preț: 329.57 lei
- Preț: 415.20 lei
- Preț: 489.15 lei
- Preț: 268.18 lei
- Preț: 420.87 lei
- Preț: 369.92 lei
- Preț: 419.96 lei
Preț: 447.87 lei
Nou
Puncte Express: 672
Preț estimativ în valută:
85.75€ • 89.29$ • 71.15£
85.75€ • 89.29$ • 71.15£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540744474
ISBN-10: 3540744479
Pagini: 284
Ilustrații: XIV, 268 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.44 kg
Ediția:2008
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540744479
Pagini: 284
Ilustrații: XIV, 268 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.44 kg
Ediția:2008
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Continuous Sampling.- Parametric Stochastic Differential Equations.- Rates of Weak Convergence of Estimators in Homogeneous Diffusions.- Large Deviations of Estimators in Homogeneous Diffusions.- Local Asymptotic Mixed Normality for Nonhomogeneous Diffusions.- Bayes and Sequential Estimation in Stochastic PDEs.- Maximum Likelihood Estimation in Fractional Diffusions.- Discrete Sampling.- Approximate Maximum Likelihood Estimation in Nonhomogeneous Diffusions.- Rates of Weak Convergence of Estimators in the Ornstein-Uhlenbeck Process.- Local Asymptotic Normality for Discretely Observed Homogeneous Diffusions.- Estimating Function for Discretely Observed Homogeneous Diffusions.
Recenzii
From the reviews:
"This book deals with a variety of statistical inference problems for stochastic differential equations … . In each chapter the author starts with useful introductory notes clearly describing the specific models and the problems. … A series of interesting and well commented examples are provided as an illustration. … Among the readers who can benefit from this carefully written book are researchers and postgraduate students in stochastic modelling; especially those working in areas such as physics, engineering, biology and finance." (Jordan M. Stoyanov, Zentralblatt MATH, Vol. 1134 (12), 2008)
"This book deals with a variety of statistical inference problems for stochastic differential equations … . In each chapter the author starts with useful introductory notes clearly describing the specific models and the problems. … A series of interesting and well commented examples are provided as an illustration. … Among the readers who can benefit from this carefully written book are researchers and postgraduate students in stochastic modelling; especially those working in areas such as physics, engineering, biology and finance." (Jordan M. Stoyanov, Zentralblatt MATH, Vol. 1134 (12), 2008)
Textul de pe ultima copertă
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.
Caracteristici
Includes supplementary material: sn.pub/extras