Partition Functions and Automorphic Forms: Moscow Lectures, cartea 5
Editat de Valery A. Gritsenko, Vyacheslav P. Spiridonoven Limba Engleză Hardback – 10 iul 2020
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 456.97 lei 6-8 săpt. | |
Springer International Publishing – 10 iul 2021 | 456.97 lei 6-8 săpt. | |
Hardback (1) | 588.07 lei 6-8 săpt. | |
Springer International Publishing – 10 iul 2020 | 588.07 lei 6-8 săpt. |
Preț: 588.07 lei
Preț vechi: 691.85 lei
-15% Nou
Puncte Express: 882
Preț estimativ în valută:
112.60€ • 117.25$ • 93.42£
112.60€ • 117.25$ • 93.42£
Carte tipărită la comandă
Livrare economică 12-26 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030423995
ISBN-10: 3030423999
Pagini: 415
Ilustrații: XIII, 415 p. 31 illus., 11 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.81 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Moscow Lectures
Locul publicării:Cham, Switzerland
ISBN-10: 3030423999
Pagini: 415
Ilustrații: XIII, 415 p. 31 illus., 11 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.81 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Moscow Lectures
Locul publicării:Cham, Switzerland
Cuprins
A short introduction to the algebra, geometry, number theory and physics of moonshine.- Modified elliptic genus.- Superconformal indices and instanton partition functions.- On spinorial representations of involutory subalgebras of Kac-Moody algebras.- BPS spectra and invariants for three- and four-manifolds.- Introduction to the theory of elliptic hypergeometric integrals.- Feynman integrals and mirror symmetry.- Theory and applications of the elliptic Painlevé equation.
Textul de pe ultima copertă
This book offers an introduction to the research in several recently discovered and actively developing mathematical and mathematical physics areas. It focuses on: 1) Feynman integrals and modular functions, 2) hyperbolic and Lorentzian Kac-Moody algebras, related automorphic forms and applications to quantum gravity, 3) superconformal indices and elliptic hypergeometric integrals, related instanton partition functions, 4) moonshine, its arithmetic aspects, Jacobi forms, elliptic genus, and string theory, and 5) theory and applications of the elliptic Painleve equation, and aspects of Painleve equations in quantum field theories. All the topics covered are related to various partition functions emerging in different supersymmetric and ordinary quantum field theories in curved space-times of different (d=2,3,…,6) dimensions. Presenting multidisciplinary methods (localization, Borcherds products, theory of special functions, Cremona maps, etc) for treating a range of partition functions, the book is intended for graduate students and young postdocs interested in the interaction between quantum field theory and mathematics related to automorphic forms, representation theory, number theory and geometry, and mirror symmetry.