Cantitate/Preț
Produs

Performance Evaluation of Electronic Oscillators: Automated S Parameter Free Design with SPICE and Discrete Fourier Transforms

Autor Amal Banerjee
en Limba Engleză Paperback – 3 oct 2020
This book demonstrates a novel, efficient and automated scheme to design and evaluate the performance of electronic oscillators, operating at the 100s of Megahertz to 10s of Gigahertz frequencies. The author describes a new oscillator design and performance evaluation scheme that addresses all the issues associated with the traditional S parameter (large, small signal) based oscillator design technique by exploiting the properties of a new breed of RF or microwave transistors, the powerful  Discrete Fourier Transform and the SPICE tool's transient analysis.  Readers will benefit from an exhaustive set of detailed, step-by-step oscillator (feedback, negative resistance, crystal and differential) design examples, as well as the software tools (C executables) used to create the design examples. Designers will be enabled to eliminate the complexities of the traditional oscillator design/performance evaluation scheme using S (large, small) parameter, resulting in accurate, robust and reliable designs.

  • Describes an efficient, automated oscillator design and performance evaluation scheme that addresses all the challenges associated with the traditional S parameter (large, small signal) based oscillator design;
  • Provides numerous step-by-step design examples, illustrating the details of the new scheme presented;
  • Includes C executables that run on both Linux and Windows, which the reader can use to experiment and design any oscillator (feedback common emitter or base, negative resistance common emitter or base or differential).
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 36587 lei  6-8 săpt.
  Springer International Publishing – 3 oct 2020 36587 lei  6-8 săpt.
Hardback (1) 37280 lei  6-8 săpt.
  Springer International Publishing – 3 oct 2019 37280 lei  6-8 săpt.

Preț: 36587 lei

Nou

Puncte Express: 549

Preț estimativ în valută:
7003 7299$ 5829£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030256807
ISBN-10: 3030256804
Pagini: 85
Ilustrații: IX, 85 p. 32 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.15 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

Chapter 1.Introduction and Problem Statement.- Chapter 2. Electronic Oscillator Fundamentals.- Chapter 3. Automated S Parameter Free Electronic Oscillator Design, Performance Evaluation Scheme and Step-by-Step Design Examples Using SPICE, Discrete Fourier Transform(DFT).


Notă biografică

Amal Banerjee is Engineering Manager at Analog Electronics, in Kolkata, India, specializing in design and manufacture of RF and microwave filters, precision power supplies, oscillators, microstrip waveguides etc., as well as special software for designing filters etc., The clients of Analog Electronics are spread across India, Vietnam and USA.  He has authored/co-authored conference papers and books on SystemC/SystemC-AMS, distributed/lumped element electronic filter design, and broad and narrow band impedance matching techniques for RF microwave applications.

Textul de pe ultima copertă

This book demonstrates a novel, efficient and automated scheme to design and evaluate the performance of electronic oscillators, operating at the 100s of Megahertz to 10s of Gigahertz frequencies. The author describes a new oscillator design and performance evaluation scheme that addresses all the issues associated with the traditional S parameter (large, small signal) based oscillator design technique by exploiting the properties of a new breed of RF or microwave transistors, the powerful  Discrete Fourier Transform and the SPICE tool's transient analysis.  Readers will benefit from an exhaustive set of detailed, step-by-step oscillator (feedback, negative resistance, crystal and differential) design examples, as well as the software tools (C executables) used to create the design examples. Designers will be enabled to eliminate the complexities of the traditional oscillator design/performance evaluation scheme using S (large, small) parameter, resulting in accurate, robustand reliable designs.

  • Describes an efficient, automated oscillator design and performance evaluation scheme that addresses all the challenges associated with the traditional S parameter (large, small signal) based oscillator design;
  • Provides numerous step-by-step design examples, illustrating the details of the new scheme presented;
  • Includes C executables that run on both Linux and Windows, which the reader can use to experiment and design any oscillator (feedback common emitter or base, negative resistance common emitter or base or differential).

Caracteristici

Describes an efficient, automated oscillator design and performance evaluation scheme that addresses all the challenges associated with the traditional S parameter (large, small signal) based oscillator design Provides numerous step-by-step design examples, illustrating the details of the new scheme presented Includes C executables that run on both Linux and Windows, which the reader can use to experiment and design any oscillator (feedback common emitter or base, negative resistance common emitter or base or differential) Request lecturer material: sn.pub/lecturer-material