Cantitate/Preț
Produs

Plastic Waste for Sustainable Asphalt Roads: Woodhead Publishing Series in Civil and Structural Engineering

Editat de Filippo Giustozzi, Sabzoi Nizamuddin
en Limba Engleză Paperback – 19 ian 2022
Waste polymers have been studied for various applications such as energy generation and biochemical production; however, their application in asphalt roads still poses some questions. Over the last decade, several studies have reported the utilization of waste plastics in roads using different methodologies and raw materials, but there is still significant inconsistency around this topic. What is the right methodology to recycle waste plastics for road applications? What is the correct type of waste plastics to be used in road applications? What environmental concerns could arise from the use of waste plastics in road applications?
Plastic Waste for Sustainable Asphalt Roads covers the various processes and techniques for the utilization of waste plastics in asphalt mixes. The book discusses the various material properties and methodologies, effects of various methodologies, and combination of various polymers. It also provides information on the compatibility between bitumen and plastics, final asphalt performance, and environmental challenges.


  • Discusses the processes and techniques for utilization of waste plastics in asphalt mixes.
  • Features a life-cycle assessment of waste plastics in road surfaces and possible Environmental Product Declarations (EPD).
  • Includes examples of on-field usage through various case studies.
Citește tot Restrânge

Din seria Woodhead Publishing Series in Civil and Structural Engineering

Preț: 131306 lei

Preț vechi: 179871 lei
-27% Nou

Puncte Express: 1970

Preț estimativ în valută:
25137 26129$ 20842£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780323857895
ISBN-10: 0323857892
Pagini: 404
Ilustrații: Approx. 150 illustrations
Dimensiuni: 152 x 229 mm
Greutate: 0.54 kg
Editura: ELSEVIER SCIENCE
Seria Woodhead Publishing Series in Civil and Structural Engineering


Public țintă

Civil engineers, road engineers, structural engineers, material scientists, and environmental engineers.

Cuprins

SECTION 1: Waste plastics—problems and opportunities 1. Polymers and plastics: Types, properties, and manufacturing 2. Thermo-mechanical, rheological, and chemical properties of recycled plastics 3. "Road-grade" recycled plastics: A critical discussion SECTION 2: Waste plastics' effect on bitumen performance 4. Rheological performance of soft and rigid waste plastic-modified bitumen and mastics 5. Rheological evaluation of PE waste-modified bitumen with particular emphasis on rutting resistance 6. Rutting of waste plastic-modified bitumen SECTION 3: Waste plastics' effect on asphalt performance 7. Volumetric properties, workability, and mechanical performance of waste plastic-modified asphalt mixtures 8. Fatigue resistance of waste plastic-modified asphalt SECTION 4: Combination of waste plastics with other road materials 9. The role of new compatibilizers in hybrid combinations of waste plastics and waste vehicle tyres crumb rubber-modified bitumen 10. Hybrid combination of waste plastics and graphene for high-performance sustainable roads 11. Influence of compatibilizers on the storage stability of hybrid polymer-modified bitumen SECTION 5: Potential environmental issues of waste plastics in roads 12. Fuming and emissions of waste plastics in bitumen at high temperature 13. Road dust-associated microplastics from vehicle traffics and weathering SECTION 6: Life cycle assessment (LCA) and techno-economic analysis of waste plastics in roads 14. Life cycle assessment (LCA) of waste plastics in road pavementd: Theoretical modeling 15. Environmental product declarations (EPDs)/product category rules (PCRs) of waste plastics and recycled materials in roads SECTION 7: Case studies 16. Application of plastic-modified asphalt for the reconstruction of the Morandi bridge in Genoa, Italy 17. Sustainable alternatives for the reuse of plastic waste in asphalt mixtures: From the laboratory to the field