Principles of Optimal Control Theory: Mathematical Concepts and Methods in Science and Engineering, cartea 7
Autor R. Gamkrelidzeen Limba Engleză Paperback – 23 mar 2013
Din seria Mathematical Concepts and Methods in Science and Engineering
- Preț: 395.66 lei
- 18% Preț: 720.67 lei
- Preț: 388.86 lei
- Preț: 379.93 lei
- Preț: 390.94 lei
- Preț: 393.39 lei
- Preț: 377.88 lei
- Preț: 378.05 lei
- Preț: 383.57 lei
- Preț: 376.34 lei
- Preț: 379.93 lei
- 20% Preț: 631.69 lei
- Preț: 391.48 lei
- Preț: 382.39 lei
- Preț: 381.48 lei
- 15% Preț: 642.79 lei
- 20% Preț: 328.14 lei
- 15% Preț: 628.49 lei
- 20% Preț: 331.21 lei
- Preț: 376.34 lei
- 15% Preț: 642.00 lei
- 15% Preț: 594.51 lei
- Preț: 384.47 lei
- 18% Preț: 930.76 lei
- 18% Preț: 940.54 lei
- Preț: 382.39 lei
- 18% Preț: 940.07 lei
- 15% Preț: 633.78 lei
- 18% Preț: 941.15 lei
- 18% Preț: 1212.55 lei
- 18% Preț: 1212.69 lei
- Preț: 385.81 lei
- 18% Preț: 941.77 lei
- 15% Preț: 628.14 lei
- 18% Preț: 934.01 lei
- 15% Preț: 637.81 lei
Preț: 375.05 lei
Nou
Puncte Express: 563
Preț estimativ în valută:
71.80€ • 73.84$ • 59.56£
71.80€ • 73.84$ • 59.56£
Carte tipărită la comandă
Livrare economică 17 februarie-03 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781468474008
ISBN-10: 1468474006
Pagini: 188
Ilustrații: XII, 175 p.
Dimensiuni: 152 x 229 x 10 mm
Greutate: 0.26 kg
Ediția:Softcover reprint of the original 1st ed. 1978
Editura: Springer Us
Colecția Springer
Seria Mathematical Concepts and Methods in Science and Engineering
Locul publicării:New York, NY, United States
ISBN-10: 1468474006
Pagini: 188
Ilustrații: XII, 175 p.
Dimensiuni: 152 x 229 x 10 mm
Greutate: 0.26 kg
Ediția:Softcover reprint of the original 1st ed. 1978
Editura: Springer Us
Colecția Springer
Seria Mathematical Concepts and Methods in Science and Engineering
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Formulation of the Time-Optimal Problem and Maximum Principle.- 1.1. Statement of the Optimal Problem.- 1.2. On the Canonical Systems of Equations Containing a Parameter and on the Pontryagin Maximum Condition.- 1.3. The Pontryagin Maximum Principle.- 1.4. A Geometrical Interpretation of the Maximum Condition..- 1.5. The Maximum Condition in the Autonomous Case.- 1.6. The Case of an Open Set U. The Canonical Formalism for the Solution of Optimal Control Problems.- 1.7. Concluding Remarks.- 2. Generalized Controls.- 2.1. Generalized Controls and a Convex Control Problem.- 2.2. Weak Convergence of Generalized Controls.- 3. The Approximation Lemma.- 3.1. Partition of Unity.- 3.2. The Approximation Lemma.- 4. The Existence and Continuous Dependence Theorem for Solutions of Differential Equations.- 4.1. Preparatory Material.- 4.2. A Fixed-Point Theorem for Contraction Mappings.- 4.3. The Existence and Continuous Dependence Theorem for Solutions of Equation (4.3).- 4.4. The Spaces ELip(G).- 4.5. The Existence and Continuous Dependence Theorems for Solutions of Differential Equations in the General Case.- 5. The Variation Formula for Solutions of Differential Equations.- 5.1. The Spaces Ex and Ex(G).- 5.2. The Equation of Variation and the Variation Formula for the Solution.- 5.3. Proof of Theorem 5.1.- 5.4. A Counterexample.- 5.5 On Solutions of Linear Matrix Differential Equations.- 6. The Varying of Trajectories in Convex Control Problems.- 6.1. Variations of Generalized Controls and the Corresponding Variations of the Controlled Equation.- 6.2. Variations of Trajectories.- 7. Proof of the Maximum Principle.- 7.1. The Integral Maximum Condition, the Pontryagin Maximum Condition, and Their Equivalence.- 7.2. The Maximum Principle in the Class of Generalized Controls.- 7.3. Construction of the Cone of Variations.- 7.4. Proof of the Maximum Principle.- 8. The Existence of Optimal Solutions.- 8.1. The Weak Compactness of the Class of Generalized Controls.- 8.2. The Existence Theorem for Convex Optimal Problems.- 8.3. The Existence Theorem in the Class of Ordinary Controls..- 8.4. Sliding Optimal Regimes.- 8.5. The Existence Theorem for Regular Problems of the Calculus of Variations.