Cantitate/Preț
Produs

Probabilistic Forecasting and Bayesian Data Assimilation

Autor Sebastian Reich, Colin Cotter
en Limba Engleză Paperback – 13 mai 2015
In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 45250 lei  6-8 săpt.
  Cambridge University Press – 13 mai 2015 45250 lei  6-8 săpt.
Hardback (1) 92484 lei  6-8 săpt.
  Cambridge University Press – 13 mai 2015 92484 lei  6-8 săpt.

Preț: 45250 lei

Nou

Puncte Express: 679

Preț estimativ în valută:
8660 9136$ 7217£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781107663916
ISBN-10: 1107663911
Pagini: 308
Ilustrații: 70 b/w illus. 7 colour illus. 70 exercises
Dimensiuni: 170 x 244 x 16 mm
Greutate: 0.61 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States

Cuprins

Preface; 1. Prologue: how to produce forecasts; Part I. Quantifying Uncertainty: 2. Introduction to probability; 3. Computational statistics; 4. Stochastic processes; 5. Bayesian inference; Part II. Bayesian Data Assimilation: 6. Basic data assimilation algorithms; 7. McKean approach to data assimilation; 8. Data assimilation for spatio-temporal processes; 9. Dealing with imperfect models; References; Index.

Recenzii

'… an ideal platform for capstone experiences tailored to students with interests spanning applied mathematics and statistics.' D. V. Feldman, Choice
'Looking at it again from the mathematician's viewpoint, this is a beautiful articulation of the deep fact that methods which were originally developed to solve specific problems, and to get around specific issues, can be reformulated as special instances of a general theory. This book by Reich and Cotter thus makes an important and potentially very influential contribution to the literature. It is arguably most exciting in that the perspective promises to produce more and better algorithms. What more could one ask of a mathematical theory?' Christopher Jones, SIAM Review

Notă biografică


Descriere

This book covers key ideas and concepts. It is an ideal introduction for graduate students in any field where Bayesian data assimilation is applied.