Probabilistic Machine Learning
Autor Kevin P. Murphyen Limba Engleză Hardback – mar 2022
Toate formatele și edițiile | Preț | Express |
---|---|---|
Hardback (2) | 760.50 lei 3-5 săpt. | +61.77 lei 7-13 zile |
MIT Press Ltd – mar 2022 | 760.50 lei 3-5 săpt. | +61.77 lei 7-13 zile |
MIT Press Ltd – 15 aug 2023 | 930.29 lei 3-5 săpt. | +90.90 lei 7-13 zile |
Preț: 760.50 lei
Preț vechi: 950.63 lei
-20% Nou
Puncte Express: 1141
Preț estimativ în valută:
145.56€ • 151.39$ • 121.98£
145.56€ • 151.39$ • 121.98£
Carte disponibilă
Livrare economică 20 februarie-06 martie
Livrare express 06-12 februarie pentru 71.76 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780262046824
ISBN-10: 0262046822
Pagini: 944
Ilustrații: 444
Dimensiuni: 208 x 233 x 37 mm
Greutate: 1.54 kg
Editura: MIT Press Ltd
ISBN-10: 0262046822
Pagini: 944
Ilustrații: 444
Dimensiuni: 208 x 233 x 37 mm
Greutate: 1.54 kg
Editura: MIT Press Ltd
Cuprins
1 Introduction 1
I Foundations 29
2 Probability: Univariate Models 31
3 Probability: Multivariate Models 75
4 statistics 103
5 Decision Theory 163
6 Information Theory 199
7 Linear Algebra 221
8 Optimization 269
II Linear Models 315
9 Linear Discriminant Analysis 317
10 Logistic Regression 333
11 Linear Regression 365
12 Generalized Linear Models * 409
III Deep Neural Networks 417
13 Neural Networks for Structured Data 419
14 Neural Networks for Images 461
15 Neural Networks for Sequences 497
IV Nonparametric Models 539
16 Exemplar-based Methods 541
17 Kernel Methods * 561
18 Trees, Forests, Bagging, and Boosting 597
V Beyond Supervised Learning 619
19 Learning with Fewer Labeled Examples 621
20 Dimensionality Reduction 651
21 Clustering 709
22 Recommender Systems 735
23 Graph Embeddings * 747
A Notation 767
I Foundations 29
2 Probability: Univariate Models 31
3 Probability: Multivariate Models 75
4 statistics 103
5 Decision Theory 163
6 Information Theory 199
7 Linear Algebra 221
8 Optimization 269
II Linear Models 315
9 Linear Discriminant Analysis 317
10 Logistic Regression 333
11 Linear Regression 365
12 Generalized Linear Models * 409
III Deep Neural Networks 417
13 Neural Networks for Structured Data 419
14 Neural Networks for Images 461
15 Neural Networks for Sequences 497
IV Nonparametric Models 539
16 Exemplar-based Methods 541
17 Kernel Methods * 561
18 Trees, Forests, Bagging, and Boosting 597
V Beyond Supervised Learning 619
19 Learning with Fewer Labeled Examples 621
20 Dimensionality Reduction 651
21 Clustering 709
22 Recommender Systems 735
23 Graph Embeddings * 747
A Notation 767
Notă biografică
Kevin P. Murphy