Cantitate/Preț
Produs

Probabilistic Machine Learning

Autor Kevin P. Murphy
en Limba Engleză Hardback – mar 2022
"This book provides a detailed and up-to-date coverage of machine learning. It is unique in that it unifies approaches based on deep learning with approaches based on probabilistic modeling and inference. It provides mathematical background (e.g. linear algebra, optimization), basic topics (e.g., linear and logistic regression, deep neural networks), as well as more advanced topics (e.g., Gaussian processes). It provides a perfect introduction for people who want to understand cutting edge work in top machine learning conferences such as NeurIPS, ICML and ICLR"--
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Hardback (2) 76050 lei  3-5 săpt. +6177 lei  7-13 zile
  MIT Press Ltd – mar 2022 76050 lei  3-5 săpt. +6177 lei  7-13 zile
  MIT Press Ltd – 15 aug 2023 93029 lei  3-5 săpt. +9090 lei  7-13 zile

Preț: 76050 lei

Preț vechi: 95063 lei
-20% Nou

Puncte Express: 1141

Preț estimativ în valută:
14556 15139$ 12198£

Carte disponibilă

Livrare economică 20 februarie-06 martie
Livrare express 06-12 februarie pentru 7176 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780262046824
ISBN-10: 0262046822
Pagini: 944
Ilustrații: 444
Dimensiuni: 208 x 233 x 37 mm
Greutate: 1.54 kg
Editura: MIT Press Ltd

Cuprins

1 Introduction 1
I Foundations 29
2 Probability: Univariate Models 31
3 Probability: Multivariate Models 75
4 statistics 103
5 Decision Theory 163
6 Information Theory 199
7 Linear Algebra 221
8 Optimization 269
II Linear Models 315
9 Linear Discriminant Analysis 317
10 Logistic Regression 333
11 Linear Regression 365
12 Generalized Linear Models * 409
III Deep Neural Networks 417
13 Neural Networks for Structured Data 419
14 Neural Networks for Images 461
15 Neural Networks for Sequences 497
IV Nonparametric Models 539
16 Exemplar-based Methods 541
17 Kernel Methods * 561
18 Trees, Forests, Bagging, and Boosting 597
V Beyond Supervised Learning 619
19 Learning with Fewer Labeled Examples 621
20 Dimensionality Reduction 651
21 Clustering 709
22 Recommender Systems 735
23 Graph Embeddings * 747
A Notation 767

Notă biografică

Kevin P. Murphy