Cantitate/Preț
Produs

Prokaryotic Toxin-Antitoxins

Editat de Kenn Gerdes
en Limba Engleză Paperback – 9 noi 2014
Prokaryotic Toxins – Antitoxins gives the first overview of an exciting and rapidly expanding research field. Toxin – antitoxin (TA) genes were discovered on plasmids 30 years ago. Since then it has become evident that TA genes are highly abundant in bacterial and archaeal chromosomes. TA genes code for an antitoxin that combine with and neutralize a cognate toxin. When activated, the toxins inhibit protein synthesis and cell growth and thereby induce dormancy and multidrug tolerance (persistence). Remarkably, in some species, the TA gene families have undergone dramatic expansions. For example, the highly persistent major human pathogen Mycobacterium tuberculosis has »100 TA loci. The large expansion of TA genes by some organisms is a biological mystery. However, recent observations indicate that TA genes contribute cumulatively to the persistence of bacteria. This medically important phenomenon may thus for the first time become experimentally tractable at the molecular level.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 92107 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 9 noi 2014 92107 lei  6-8 săpt.
Hardback (1) 92553 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 19 oct 2012 92553 lei  6-8 săpt.

Preț: 92107 lei

Preț vechi: 112326 lei
-18% Nou

Puncte Express: 1382

Preț estimativ în valută:
17628 18597$ 14690£

Carte tipărită la comandă

Livrare economică 03-17 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642446573
ISBN-10: 3642446574
Pagini: 376
Ilustrații: VIII, 368 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Introduction.- Type I Toxin – Antitoxin Systems: Hok/Sok and Fst .- Novel Type I Toxin – Antitoxin Systems.- Type II TA Loci: The Ccdab and Parde Families.- Type II TA Loci: The Relbe Family.- Type II TA Loci: The Unusual Mqsra Locus.- Type II TA Loci: The Mazef Family.- Type II TA Loci: Vapbc and Other TA Loci In Mycobacteria.- Type II TA Loci: Phd Doc Family.- Type II TA Loci: The Fic Family.- Type II TA Loci, Hipab And Persisters.- Type II TA Loci: Zeta/Pezt Family.- Type II Loci: Phylogeny.- Type III TA Loci.- TA Loci Encoded By Plasmids.- TA Loci in Archaea.- TA Loci in Mycobacterium Tuberculosis.- TA Loci in Streptococcus Pneumoniae.- Biotechnological and Medical Exploitations Of TA Genes and Their Components.

Textul de pe ultima copertă

Prokaryotic Toxins – Antitoxins presents the first comprehensive overview of an exciting and rapidly expanding research field. Toxin – antitoxin (TA) genes were first identified on plasmids almost 30 years ago. Since then it has become evident that TA genes are highly abundant on both plasmids and chromosomes belonging to the bacterial and archaeal domains. TA genes come in three variants, depending on how the antitoxin works. In the most common TA genes, called type II TA loci, the antitoxins are proteins that combine with and neutralize the toxins. Even though the toxins come from at least 10 evolutionary independent gene families they inhibit translation and induce dormancy and persistence. The toxins inhibit translation using different molecular mechanisms. For example, the most common toxin family, called VapC (Virulence-associated protein), inhibits translation by cleaving initiator tRNA. Another common toxin family, called RelE, inhibits translation by cleaving messenger RNA  positioned at the ribosome. Recent database mining revealed more than 10,000 such TA loci in »700 prokaryotic organisms. Remarkably, in some species, TA genes have undergone dramatic expansions. For example, the highly persistent major human pathogen Mycobacterium tuberculosis has almost 100 TA loci belonging to different gene families, whereas its close relative M. leprae has none. All sequenced archaeal genomes to date have at least two TA loci and the thermophilic archaeon Sulfolobus tokodaii has »40 TA loci. The considerable expansion of the TA genes is a biological mystery but may be related to the biological function(s) of TA genes, a topic that is still hotly debated. The genetic analysis of TA genes is hampered by the multitude of seemingly similar genes within one particular genome. However, recent analysis with the model organism E. coli revealed a breakthrough indicating that TA genes contributecumulatively to bacterial persistence. All known free-living bacteria that form persisters, cells that survive antibiotics and other environmental threats, contain TA genes. Together, these groundbreaking observations have raised the exciting possibility that TA genes are involved in the persistence of many bacteria, including major human pathogens such as M. tuberculosis. The expanding TA field has an exciting future ahead of it.

Caracteristici

Prokaryotic Toxin-Antitoxins gives a brief and clear overview of a complex and rapidly expanding research field of scientific, biotechnological and medical importance Written by experts With numerous colour illustrations ? Includes supplementary material: sn.pub/extras