Cantitate/Preț
Produs

Proof Theory of Modal Logic: Applied Logic Series, cartea 2

Editat de Heinrich Wansing
en Limba Engleză Hardback – 31 oct 1996
Proof Theory of Modal Logic is devoted to a thorough study of proof systems for modal logics, that is, logics of necessity, possibility, knowledge, belief, time, computations etc. It contains many new technical results and presentations of novel proof procedures. The volume is of immense importance for the interdisciplinary fields of logic, knowledge representation, and automated deduction.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 94624 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 9 dec 2010 94624 lei  6-8 săpt.
Hardback (1) 95240 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 31 oct 1996 95240 lei  6-8 săpt.

Din seria Applied Logic Series

Preț: 95240 lei

Preț vechi: 116147 lei
-18% Nou

Puncte Express: 1429

Preț estimativ în valută:
18226 19005$ 15148£

Carte tipărită la comandă

Livrare economică 21 martie-04 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792341208
ISBN-10: 0792341201
Pagini: 336
Ilustrații: X, 318 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:1996
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Applied Logic Series

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

I Standard Proof Systems.- A Contraction-free Sequent Calculus for S4.- Transfer of Sequent Calculus Strategies to Resolution for S4.- A Linear Approach to Modal Proof Theory.- Refutations and Proofs in S4.- II Extended Formalisms.- Relational Proof Systems for Modal Logics.- The Display Problem.- Power and Weakness of the Modal Display Calculus.- A Proof-theoretic Proof of Functional Completeness for Many Modal and Tense Logics.- On the Completeness of Classical Modal Display Logic.- Modal Sequents.- Modal Functional Completeness.- A Computational Interpretation of Modal Proofs.- Gabbay-style Calculi.- III Translation-based Proof Systems.- Translating Graded Modalities into Predicate Logics.- From Classical to Normal Modal Logics.