Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents: Lecture Notes in Mathematics, cartea 2329
Autor Alex Kaltenbachen Limba Engleză Paperback – 12 aug 2023
Din seria Lecture Notes in Mathematics
- 17% Preț: 360.42 lei
- Preț: 459.92 lei
- Preț: 121.41 lei
- Preț: 175.68 lei
- Preț: 197.00 lei
- Preț: 279.76 lei
- Preț: 477.65 lei
- 17% Preț: 361.88 lei
- Preț: 252.37 lei
- Preț: 353.99 lei
- Preț: 138.88 lei
- Preț: 152.61 lei
- Preț: 116.67 lei
- Preț: 102.77 lei
- 17% Preț: 365.52 lei
- Preț: 396.75 lei
- 17% Preț: 362.12 lei
- Preț: 396.11 lei
- Preț: 357.78 lei
- 17% Preț: 362.31 lei
- Preț: 403.80 lei
- 17% Preț: 361.70 lei
- Preț: 499.87 lei
- Preț: 457.03 lei
- Preț: 395.90 lei
- Preț: 459.00 lei
- Preț: 487.57 lei
- Preț: 424.01 lei
- Preț: 487.57 lei
- Preț: 330.55 lei
- Preț: 325.75 lei
- Preț: 350.30 lei
- Preț: 331.31 lei
- Preț: 408.37 lei
- Preț: 328.25 lei
- Preț: 421.28 lei
- Preț: 276.08 lei
- Preț: 424.60 lei
- Preț: 422.05 lei
- Preț: 505.01 lei
- Preț: 422.05 lei
- Preț: 274.93 lei
- Preț: 335.16 lei
- Preț: 422.27 lei
- Preț: 497.49 lei
- Preț: 272.81 lei
- Preț: 428.04 lei
- Preț: 376.22 lei
- Preț: 427.10 lei
- Preț: 325.92 lei
Preț: 459.00 lei
Nou
Puncte Express: 689
Preț estimativ în valută:
87.84€ • 91.59$ • 73.00£
87.84€ • 91.59$ • 73.00£
Carte tipărită la comandă
Livrare economică 21 martie-04 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031296697
ISBN-10: 3031296699
Ilustrații: XIII, 358 p. 11 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.52 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
ISBN-10: 3031296699
Ilustrații: XIII, 358 p. 11 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.52 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
Cuprins
- 1. Introduction. - 2. Preliminaries. - Part I Main Part. - 3. Variable Bochner–Lebesgue Spaces. - 4. Solenoidal Variable Bochner–Lebesgue Spaces. - 5. Existence Theory for Lipschitz Domains. - Part II Extensions. - 6. Pressure Reconstruction. - 7. Existence Theory for Irregular Domains. - 8. Existence Theory for p- < 2. - 9. Appendix.
Recenzii
“This book is essentially based on the author’s doctoral thesis … . The book also contains an appendix and references. … The book could be used by graduate students and researchers working on such problems.” (Gheorghe Moroşanu, zbMATH 1526.35002, 2024)
Notă biografică
Textul de pe ultima copertă
This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner–Lebesgue spaces is not applicable. As a substitute for Bochner–Lebesgue spaces, variable Bochner–Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier–Stokes equations under general assumptions.
Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory andnon-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.
Caracteristici
Includes the first proof of the existence of weak solutions of the unsteady p(t,x)-Navier-Stokes equations Provides a comprehensive review of the rapidly expanding field of unsteady problems with variable >exponents Requires only a basic knowledge of functional analysis