Cantitate/Preț
Produs

Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents: Lecture Notes in Mathematics, cartea 2329

Autor Alex Kaltenbach
en Limba Engleză Paperback – 12 aug 2023
This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner–Lebesgue spaces is not applicable. As a substitute for Bochner–Lebesgue spaces, variable Bochner–Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier–Stokes equations under general assumptions. Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory andnon-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 45129 lei

Nou

Puncte Express: 677

Preț estimativ în valută:
8639 8885$ 7167£

Carte tipărită la comandă

Livrare economică 15 februarie-01 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031296697
ISBN-10: 3031296699
Ilustrații: XIII, 358 p. 11 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.52 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Cham, Switzerland

Cuprins

- 1. Introduction. - 2. Preliminaries. - Part I Main Part. - 3. Variable Bochner–Lebesgue Spaces. - 4. Solenoidal Variable Bochner–Lebesgue Spaces. - 5. Existence Theory for Lipschitz Domains. - Part II Extensions. - 6. Pressure Reconstruction. - 7. Existence Theory for Irregular Domains. - 8. Existence Theory for p- < 2. - 9. Appendix.

Recenzii

“This book is essentially based on the author’s doctoral thesis … . The book also contains an appendix and references. … The book could be used by graduate students and researchers working on such problems.” (Gheorghe Moroşanu, zbMATH 1526.35002, 2024)

Notă biografică



Textul de pe ultima copertă

This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner–Lebesgue spaces is not applicable. As a substitute for Bochner–Lebesgue spaces, variable Bochner–Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier–Stokes equations under general assumptions. Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory andnon-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.

Caracteristici

Includes the first proof of the existence of weak solutions of the unsteady p(t,x)-Navier-Stokes equations Provides a comprehensive review of the rapidly expanding field of unsteady problems with variable >exponents Requires only a basic knowledge of functional analysis