Cantitate/Preț
Produs

Python for Marketing Research and Analytics

Autor Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit
en Limba Engleză Paperback – 3 noi 2021
This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. 
This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics. 
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 45658 lei  43-57 zile
  Springer International Publishing – 3 noi 2021 45658 lei  43-57 zile
Hardback (1) 49187 lei  38-44 zile
  Springer International Publishing – 3 noi 2020 49187 lei  38-44 zile

Preț: 45658 lei

Nou

Puncte Express: 685

Preț estimativ în valută:
8741 8989$ 7251£

Carte tipărită la comandă

Livrare economică 17 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030497224
ISBN-10: 3030497224
Pagini: 272
Ilustrații: XI, 272 p. 90 illus., 79 illus. in color.
Dimensiuni: 210 x 279 x 19 mm
Greutate: 0.65 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

Part I: Basics of Python.- Chapter 1: Welcome to Python.- Chapter 2: The Python Language.- Part II Fundamentals of Data Analysis.- Chapter 3: Describing Data.- Chapter 4: Relationships Between Continuous Variables.- Chapter 5: Comparing Groups: Tables and Visualizations.- Chapter 6: Comparing Groups: Statistical Tests.- Chapter 7: Identifying Drivers of Outcomes: Linear Models.- Chapter 8: Additional Linear Modeling Topics.- Part III Advanced data analysis.- Chapter 9: Reducing Data Complexity.- Chapter 10: Segmentation: Unsupervised Clustering Methods for Exploring Subpopulations.- Chapter 11: Classification: Assigning observations to known categories.- Chapter 12: Conclusion.- Index.

Notă biografică

Jason Schwarz PhD is a Quantitative Researcher at Google and a former systems neurobiologist. His areas of research include perception, attention, motivation, behavioral pattern formation, and data visualization which he studies at scale at Google. Prior to joining Google, he was a data scientist at a startup where he ran analytics and developed and deployed production machine learning models on a Python stack. 
Chris Chapman PhD is a Quantitative Researcher at Google, and an author of Chapman & Feit, R for Marketing Research and Analytics (Springer, 2015). In the broader industry, he has served as President of the American Marketing Association’s Practitioner Council, chaired the AMA Advanced Research Techniques Forum in 2012 and 2017, and is a member of several conference and industry committees. Chris regularly presents research innovations and teaches workshops on R, conjoint analysis, strategic modeling, and other analytics topics.
EleaMcDonnell Feit is an Assistant Professor of Marketing at Drexel University and a Senior Fellow of Marketing at The Wharton School. She enjoys making quantitative methods accessible to a broad audience and teaches workshops and courses on advertising measurement, marketing experiments, marketing analytics in R, discrete choice modeling and hierarchical Bayes methods.  She is an author of Chapman & Feit, R for Marketing Research and Analytics (Springer, 2015).

Textul de pe ultima copertă

This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. 
This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics. 

Caracteristici

Introduces Python specifically for advanced quantitative marketing and analytics Presents the concept of shareable reproducible research enabled by notebooks Applies Python to the building of statistical models using open source libraries such as sklearn and statsmodels