Quadratic Mappings and Clifford Algebras
Autor Jacques Helmstetter, Artibano Micalien Limba Engleză Hardback – 17 apr 2008
Preț: 602.19 lei
Preț vechi: 752.73 lei
-20% Nou
Puncte Express: 903
Preț estimativ în valută:
115.23€ • 121.69$ • 95.89£
115.23€ • 121.69$ • 95.89£
Carte tipărită la comandă
Livrare economică 08-14 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764386054
ISBN-10: 3764386053
Pagini: 520
Ilustrații: XIII, 504 p.
Dimensiuni: 165 x 235 x 33 mm
Greutate: 1.09 kg
Ediția:2008
Editura: Birkhäuser Basel
Colecția Birkhäuser
Locul publicării:Basel, Switzerland
ISBN-10: 3764386053
Pagini: 520
Ilustrații: XIII, 504 p.
Dimensiuni: 165 x 235 x 33 mm
Greutate: 1.09 kg
Ediția:2008
Editura: Birkhäuser Basel
Colecția Birkhäuser
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
Algebraic Preliminaries.- Quadratic Mappings.- Clifford Algebras.- Comultiplications. Exponentials. Deformations.- Orthogonal Groups and Lipschitz Groups.- Further Algebraic Developments.- Hyperbolic Spaces.- Complements about Witt Rings and Other Topics.
Textul de pe ultima copertă
After a classical presentation of quadratic mappings and Clifford algebras over arbitrary rings (commutative, associative, with unit), other topics involve more original methods: interior multiplications allow an effective treatment of deformations of Clifford algebras; the relations between automorphisms of quadratic forms and Clifford algebras are based on the concept of the Lipschitz monoid, from which several groups are derived; and the Cartan-Chevalley theory of hyperbolic spaces becomes much more general, precise and effective.
Caracteristici
The study of Clifford algebras leads to sophisticated theories involving noncommutative algebras over a ring, e.g., Azumaya algebras, Morita theory, separability Provides a self-contained introduction to commutative algebra Prerequisites are only elementary algebra and linear and multilinear algebra over fields (and a bit over rings) Includes supplementary material: sn.pub/extras