Cantitate/Preț
Produs

Quantitative Economics with R: A Data Science Approach

Autor Vikram Dayal
en Limba Engleză Paperback – 4 feb 2021
This book provides a contemporary treatment of quantitative economics, with a focus on data science. The book introduces the reader to R and RStudio, and uses expert Hadley Wickham’s tidyverse package for different parts of the data analysis workflow. After a gentle introduction to R code,  the reader’s R skills are gradually honed, with the help of  “your turn” exercises. 
At the heart of data science is data, and the book equips the reader to import and wrangle data, (including network data). Very early on, the reader will begin using the popular ggplot2 package for visualizing data, even making basic maps. The use of R in understanding functions, simulating difference equations, and carrying out matrix operations is also covered. The book uses Monte Carlo simulation to understand probability and statistical inference, and the bootstrap is introduced. Causal inferenceis illuminated using simulation, data graphs, and R code for applications with real economic examples, covering experiments, matching, regression discontinuity, difference-in-difference, and instrumental variables. The interplay of growth related data and models is presented, before the book introduces the reader to time series data analysis with graphs, simulation, and examples. Lastly, two computationally intensive methods—generalized additive models and random forests (an important and versatile machine learning method)—are introduced intuitively with applications. 
The book will be of great interest to economists—students, teachers, and researchers alike—who want to learn R. It will help economics students gain an intuitive appreciation of applied economics and enjoy engaging with the material actively, while also equipping them with key data science skills.


Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 50314 lei  6-8 săpt.
  Springer Nature Singapore – 4 feb 2021 50314 lei  6-8 săpt.
Hardback (1) 66863 lei  6-8 săpt.
  Springer Nature Singapore – 4 feb 2020 66863 lei  6-8 săpt.

Preț: 50314 lei

Preț vechi: 59193 lei
-15% Nou

Puncte Express: 755

Preț estimativ în valută:
9632 10492$ 8080£

Carte tipărită la comandă

Livrare economică 18 decembrie 24 - 01 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789811520372
ISBN-10: 9811520372
Pagini: 326
Ilustrații: XV, 326 p. 300 illus., 89 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.53 kg
Ediția:1st ed. 2020
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore

Cuprins

Ch 1 Introduction.- Ch 2 R and RStudio.- Ch 3 Getting data into R.- Ch 4 Wrangling and graphing data.- Ch 5 Functions.- Ch 6 Matrices.- Ch 7 Probability and statistical inference.- Ch 8 Causal inference.- Ch 9 Solow model and basic facts of growth.- Ch 10 Causal inference for growth.- Ch 11 Graphing and simulating basic time series.- Ch 12 Simple examples: forecasting and causal inference.- Ch 13 Generalized additive models.- Ch 14 Tree models.

Notă biografică

Vikram Dayal is a Professor at the Institute of Economic Growth, Delhi. He has been using the R software in teaching quantitative economics to diverse audiences, and is the author of the Springer Brief titled An Introduction to R for Quantitative Economics: Graphing, Simulating and Computing. He has published research on a range of environmental and developmental issues, from outdoor and indoor air pollution in Goa, India, to tigers and Prosopis juliflora in Ranthambore National Park. He studied economics in India and the USA, and received his doctoral degree from the Delhi School of Economics, University of Delhi.


Textul de pe ultima copertă

This book provides a contemporary treatment of quantitative economics, with a focus on data science. The book introduces the reader to R and RStudio, and uses expert Hadley Wickham’s tidyverse package for different parts of the data analysis workflow. After a gentle introduction to R code,  the reader’s R skills are gradually honed, with the help of  “your turn” exercises. 
At the heart of data science is data, and the book equips the reader to import and wrangle data, (including network data). Very early on, the reader will begin using the popular ggplot2 package for visualizing data, even making basic maps. The use of R in understanding functions, simulating difference equations, and carrying out matrix operations is also covered. The book uses Monte Carlo simulation to understand probability and statistical inference, and the bootstrapis introduced. Causal inference isilluminated using simulation, data graphs, and R code for applications with real economic examples, covering experiments, matching, regression discontinuity, difference-in-difference, and instrumental variables. The interplay of growth related data and models is presented, before the book introduces the reader to time series data analysis with graphs, simulation, and examples. Lastly, two computationally intensive methods—generalized additive models and random forests (an important and versatile machine learning method)—are introduced intuitively with applications.  The book will be of great interest to economists—students, teachers, and researchers alike—who want to learn R. It will help economics students gain an intuitive appreciation of appliedeconomics and enjoy engaging with the material actively, while also equipping them with key data science skills.


Caracteristici

Employs a popular data science approach while discussing concepts and applications related to economics Explains causal inferences with the aid of simulations, data graphs, and sample applications Introduces readers to two versatile statistical learning techniques—generalized additive models and tree models