Cantitate/Preț
Produs

Quantum Groups: Proceedings of the 8th International Workshop on Mathematical Physics, Held at the Arnold Sommerfeld Institute, Clausthal, FRG, on 19–26 July 1989: Lecture Notes in Physics, cartea 370

Editat de Heinz-Dietrich Doebner, Jörg-D. Hennig
en Limba Engleză Paperback – 17 apr 2014
A thorough analysis of exactly soluble models in nonlinear classical systems and in quantum systems as well as recent studies in conformal quantum field theory have revealed the structure of quantum groups to be an interesting and rich framework for mathematical and physical problems. In this book, for the first time, authors from different schools review in an intelligible way the various competing approaches: inverse scattering methods, 2-dimensional statistical models, Yang-Baxter algebras, the Bethe ansatz, conformal quantum field theory, representations, braid group statistics, noncommutative geometry, and harmonic analysis.
Citește tot Restrânge

Din seria Lecture Notes in Physics

Preț: 64005 lei

Preț vechi: 75300 lei
-15% Nou

Puncte Express: 960

Preț estimativ în valută:
12253 12601$ 10165£

Carte tipărită la comandă

Livrare economică 17 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662137871
ISBN-10: 3662137879
Pagini: 452
Ilustrații: X, 438 p. 2 illus.
Dimensiuni: 170 x 244 x 24 mm
Greutate: 0.71 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Physics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

to quantum groups.- Mathematical guide to quantum groups.- A q-boson realization of the quantum group SU q (2) and the theory of q-tensor operators.- Polynomial basis for SU(2)q and Clebsch-Gordan coefficients.- U q (sl(2)) Invariant operators and reduced polynomial identities.- Classification and characters of Uq(sl(3, C ))representations.- Extremal projectors for quantized kac-moody superalgebras and some of their applications.- Yang-Baxter algebras, integrable theories and Betre Ansatz.- Yang-Baxter algebra — Bethe Ansatz — conformal quantum field theories — quantum groups.- Classical Yang-Baxter equations and quantum integrable systems (Gaudin models).- Quantum groups as symmetries of chiral conformal algebras.- Comments on rational conformal field theory, quantum groups and tower of algebras.- Chern-Simons field theory and quantum groups.- Quantum symmetry associated with braid group statistics.- Sum rules for spins in (2 + 1)-dimensional quantum field theory.- Anomalies from the phenomenological and geometrical points of view.- KMS states, cyclic cohomology and supersymmetry.- Gauge theories based on a non-commutative geometry.- Algebras symmetries spaces.