Quantum Mechanics of Molecular Structures
Autor Kaoru Yamanouchien Limba Engleză Paperback – 7 mar 2015
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 428.46 lei 38-44 zile | |
Springer – 7 mar 2015 | 428.46 lei 38-44 zile | |
Hardback (1) | 589.65 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 2 feb 2013 | 589.65 lei 6-8 săpt. |
Preț: 428.46 lei
Nou
Puncte Express: 643
Preț estimativ în valută:
81.99€ • 85.08$ • 68.53£
81.99€ • 85.08$ • 68.53£
Carte tipărită la comandă
Livrare economică 13-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642446283
ISBN-10: 3642446280
Pagini: 284
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:2012
Editura: Springer
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642446280
Pagini: 284
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:2012
Editura: Springer
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
The Energy and Geometrical Structure of Molecules.- Vibrating Molecules.- Rotating Molecules.- Scattering Electrons.
Textul de pe ultima copertă
At a level accessible to advanced undergraduates, this textbook explains the fundamental role of quantum mechanics in determining the structure, dynamics, and other properties of molecules. Readers will come to understand the quantum-mechanical basis for harmonic oscillators, angular momenta and scattering processes. Exercises are provided to help readers deepen their grasp of the essential phenomena.
Caracteristici
Explains quantum mechanics of molecular structures
Gives a survey of structure, dynamics and other properties of molecules
Teaches the topic in a way accessible to graduate and advanced undergraduate students
Gives a survey of structure, dynamics and other properties of molecules
Teaches the topic in a way accessible to graduate and advanced undergraduate students
Descriere
This book reviews the fundamental role of quantum mechanics in determining the structure, dynamics, and other properties of molecules. Explains the quantum-mechanical basis for harmonic oscillators, angular momenta and scattering processes. Exercises included.