Quick Calculus: A Self–Teaching Guide, Third Editi on: Wiley Self-Teaching Guides
Autor D Kleppneren Limba Engleză Paperback – 12 iun 2022
Din seria Wiley Self-Teaching Guides
- Preț: 114.85 lei
- Preț: 135.91 lei
- Preț: 129.01 lei
- Preț: 122.50 lei
- Preț: 122.20 lei
- Preț: 136.48 lei
- Preț: 158.38 lei
- Preț: 121.45 lei
- Preț: 145.60 lei
- Preț: 162.29 lei
- Preț: 109.46 lei
- Preț: 113.83 lei
- Preț: 127.23 lei
- Preț: 127.23 lei
- Preț: 199.29 lei
- Preț: 91.09 lei
- Preț: 137.13 lei
- Preț: 142.93 lei
- Preț: 176.19 lei
- Preț: 191.10 lei
- Preț: 135.66 lei
- Preț: 124.59 lei
- Preț: 133.61 lei
- Preț: 111.14 lei
- Preț: 109.60 lei
- Preț: 191.36 lei
- 5% Preț: 116.46 lei
Preț: 120.84 lei
Nou
Puncte Express: 181
Preț estimativ în valută:
23.13€ • 23.86$ • 19.57£
23.13€ • 23.86$ • 19.57£
Carte disponibilă
Livrare economică 11-25 februarie
Livrare express 28 ianuarie-01 februarie pentru 27.74 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781119743194
ISBN-10: 1119743192
Pagini: 304
Dimensiuni: 188 x 238 x 20 mm
Greutate: 0.43 kg
Ediția:3rd Edition
Editura: JOSSEY BASS
Seria Wiley Self-Teaching Guides
Locul publicării:Hoboken, United States
ISBN-10: 1119743192
Pagini: 304
Dimensiuni: 188 x 238 x 20 mm
Greutate: 0.43 kg
Ediția:3rd Edition
Editura: JOSSEY BASS
Seria Wiley Self-Teaching Guides
Locul publicării:Hoboken, United States
Notă biografică
Daniel KLEPPNER is the Lester Wolfe Professor of Physics at MIT. He was awarded the National Medal of Science and the Oersted Medal of the American Association of Physics Teachers. peter DOURMASHKIN is Senior Lecturer at MIT. The late Norman RAMSEY was the Higgins Professor of Physics at Harvard University and the recipient of the 1989 Nobel Prize in Physics.
Cuprins
Preface iii
Chapter One Starting Out 1
1.1 A Few Preliminaries 1
1.2 Functions 2
1.3 Graphs 5
1.4 Linear and Quadratic Functions 11
1.5 Angles and Their Measurements 19
1.6 Trigonometry 28
1.7 Exponentials and Logarithms 42
Summary of Chapter 1 51
Chapter Two Differential Calculus 57
2.1 The Limit of a Function 57
2.2 Velocity 71
2.3 Derivatives 83
2.4 Graphs of Functions and Their Derivatives 87
2.5 Differentiation 97
2.6 Some Rules for Differentiation 103
2.7 Differentiating Trigonometric Functions 114
2.8 Differentiating Logarithms and Exponentials 121
2.9 Higher-Order Derivatives 130
2.10 Maxima and Minima 134
2.11 Differentials 143
2.12 A Short Review and Some Problems 147
Conclusion to Chapter 2 164
Summary of Chapter 2 165
Chapter Three Integral Calculus 169
3.1 Antiderivative, Integration, and the Indefinite Integral 170
3.2 Some Techniques of Integration 174
3.3 Area Under a Curve and the Definite Integral 182
3.4 Some Applications of Integration 201
3.5 Multiple Integrals 211
Conclusion to Chapter 3 219
Summary of Chapter 3 219
Chapter Four Advanced Topics: Taylor Series, Numerical Integration, and Differential Equations 223
4.1 Taylor Series 223
4.2 Numerical Integration 232
4.3 Differential Equations 235
4.4 Additional Problems for Chapter 4 244
Summary of Chapter 4 248
Conclusion (frame 449) 250
Appendix A Derivations 251
A.1 Trigonometric Functions of Sums of Angles 251
A.2 Some Theorems on Limits 252
A.3 Exponential Function 254
A.4 Proof That dy/dx = 1/dx/dy 255
A.5 Differentiating X¯n 256
A.6 Differentiating Trigonometric Functions 258
A.7 Differentiating the Product of Two Functions 258
A.8 Chain Rule for Differentiating 259
A.9 Differentiating Ln X 259
A.10 Differentials When Both Variables Depend on a Third Variable 260
A.11 Proof That if Two Functions Have the Same Derivative They Differ Only by a Constant 261
A.12 Limits Involving Trigonometric Functions 261
Appendix B Additional Topics in Differential Calculus 263
B.1 Implicit Differentiation 263
B.2 Differentiating the Inverse Trigonometric Functions 264
B.3 Partial Derivatives 267
B.4 Radial Acceleration in Circular Motion 269
B.5 Resources for Further Study 270
Frame Problems Answers 273
Answers to Selected Problems from the Text 273
Review Problems 277
Chapter 1 277
Chapter 2 278
Chapter 3 282
Tables 287
Table 1: Derivatives 287
Table 2: Integrals 288
Indexes 291
Index 291
Index of Symbols 295