Quine, New Foundations, and the Philosophy of Set Theory
Autor Sean Morrisen Limba Engleză Paperback – 20 ian 2021
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 281.30 lei 6-8 săpt. | |
Cambridge University Press – 20 ian 2021 | 281.30 lei 6-8 săpt. | |
Hardback (1) | 446.74 lei 3-5 săpt. | +25.19 lei 7-13 zile |
Cambridge University Press – 12 dec 2018 | 446.74 lei 3-5 săpt. | +25.19 lei 7-13 zile |
Preț: 281.30 lei
Nou
Puncte Express: 422
Preț estimativ în valută:
53.85€ • 55.41$ • 45.39£
53.85€ • 55.41$ • 45.39£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781316606636
ISBN-10: 1316606635
Pagini: 219
Dimensiuni: 150 x 230 x 12 mm
Greutate: 0.3 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1316606635
Pagini: 219
Dimensiuni: 150 x 230 x 12 mm
Greutate: 0.3 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
Cuprins
Preface; Introduction; Part I: 1. Cantor and the early development of set theory; 2. Cantor, Russell, and Zermelo and the set-theoretic paradoxes; 3. NF and the beginnings of Quine's philosophy of set theory; Part II: 4. Quine's philosophy of set theory; 5. Clarifying our conceptual scheme: set theory and the role of explication; Part III: 6. The iterative conception and set theory; 7. NF, the axiom of choice, and arithmetic; Bibliography; Index.
Recenzii
'Sean Morris's book fills a heretofore gaping hole in our understanding of the origins and history of set theory, explaining how Quine's New Foundations is not the isolated, idiosyncratic system it is sometimes taken to be, but is instead deeply connected - historically, philosophically, and mathematically - to other, now more mainstream, accounts of the nature of sets.' Roy T. Cook, University of Minnesota, Twin Cities
Notă biografică
Descriere
Provides an accessible mathematical and philosophical account of Quine's set theory, New Foundations.