Cantitate/Preț
Produs

Random Geometrically Graph Directed Self-Similar Multifractals: Chapman & Hall/CRC Research Notes in Mathematics Series

Autor Lars Olsen
en Limba Engleză Hardback – 18 mai 1994
Multifractal theory was introduced by theoretical physicists in 1986. Since then, multifractals have increasingly been studied by mathematicians. This new work presents the latest research on random results on random multifractals and the physical thermodynamical interpretation of these results. As the amount of work in this area increases, Lars Olsen presents a unifying approach to current multifractal theory. Featuring high quality, original research material, this important new book fills a gap in the current literature available, providing a rigorous mathematical treatment of multifractal measures.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 25998 lei  6-8 săpt.
  CRC Press – 2 dec 2019 25998 lei  6-8 săpt.
Hardback (1) 83610 lei  6-8 săpt.
  CRC Press – 18 mai 1994 83610 lei  6-8 săpt.

Din seria Chapman & Hall/CRC Research Notes in Mathematics Series

Preț: 83610 lei

Preț vechi: 101963 lei
-18% Nou

Puncte Express: 1254

Preț estimativ în valută:
16000 16603$ 13374£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780582253810
ISBN-10: 0582253810
Pagini: 262
Dimensiuni: 178 x 254 x 17 mm
Greutate: 0.43 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Research Notes in Mathematics Series


Public țintă

Professional Practice & Development

Cuprins

1. Introduction 2. Definitions and Statements of Results 3. Examples 4. Proofs of Auxiliary Results 5. The Random Variable Xu,q 6. The Random Multifractal Construction Measure Mu, q and the Qu, q Measure 7. Proofs of Main Results

Descriere

This book contains latest research on random results on random multifractals and the physical thermodynamical interpretation of these results. It presents a rigorous foundation for the multifractal structure of random geometrically graph directed self-similar measures developed by the author.