Cantitate/Preț
Produs

Rate-Distortion Based Video Compression: Optimal Video Frame Compression and Object Boundary Encoding

Autor Guido M. Schuster, Aggelos Katsaggelos
en Limba Engleză Hardback – 30 dec 1996
One of the most intriguing problems in video processing is the removal of the redundancy or the compression of a video signal. There are a large number of applications which depend on video compression. Data compression represents the enabling technology behind the multimedia and digital television revolution. In motion compensated lossy video compression the original video sequence is first split into three new sources of information, segmentation, motion and residual error. These three information sources are then quantized, leading to a reduced rate for their representation but also to a distorted reconstructed video sequence. After the decomposition of the original source into segmentation, mo­ tion and residual error information is decided, the key remaining problem is the allocation of the available bits into these three sources of information. In this monograph a theory is developed which provides a solution to this fundamental bit allocation problem. It can be applied to all quad-tree-based motion com­ pensated video coders which use a first order differential pulse code modulation (DPCM) scheme for the encoding of the displacement vector field (DVF) and a block-based transform scheme for the encoding of the displaced frame differ­ ence (DFD). An optimal motion estimator which results in the smallest DFD energy for a given bit rate for the encoding of the DVF is also a result of this theory. Such a motion estimator is used to formulate a motion compensated interpolation scheme which incorporates a global smoothness constraint for the DVF.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 95039 lei  6-8 săpt.
  Springer Us – 6 dec 2010 95039 lei  6-8 săpt.
Hardback (1) 95863 lei  6-8 săpt.
  Springer Us – 30 dec 1996 95863 lei  6-8 săpt.

Preț: 95863 lei

Preț vechi: 119829 lei
-20% Nou

Puncte Express: 1438

Preț estimativ în valută:
18347 19355$ 15289£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792398509
ISBN-10: 0792398505
Pagini: 288
Ilustrații: XX, 288 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.68 kg
Ediția:1997
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Descriere

One of the most intriguing problems in video processing is the removal of the redundancy or the compression of a video signal. There are a large number of applications which depend on video compression. Data compression represents the enabling technology behind the multimedia and digital television revolution. In motion compensated lossy video compression the original video sequence is first split into three new sources of information, segmentation, motion and residual error. These three information sources are then quantized, leading to a reduced rate for their representation but also to a distorted reconstructed video sequence. After the decomposition of the original source into segmentation, mo­ tion and residual error information is decided, the key remaining problem is the allocation of the available bits into these three sources of information. In this monograph a theory is developed which provides a solution to this fundamental bit allocation problem. It can be applied to all quad-tree-based motion com­ pensated video coders which use a first order differential pulse code modulation (DPCM) scheme for the encoding of the displacement vector field (DVF) and a block-based transform scheme for the encoding of the displaced frame differ­ ence (DFD). An optimal motion estimator which results in the smallest DFD energy for a given bit rate for the encoding of the DVF is also a result of this theory. Such a motion estimator is used to formulate a motion compensated interpolation scheme which incorporates a global smoothness constraint for the DVF.

Cuprins

1 Introduction.- 2 Review of Lossy Video Compression.- 3 Background.- 4 General Contributions.- 5 Optimal Motion Estimation and Motion Compensated Interpolation for Video Compression.- 6 A Video Compression Scheme with Optimal Bit Allocation Between Displacement Vector Field and Displaced Frame Difference.- 7 A Video Compression Scheme with Optimal Bit Allocation Among Segmentation, Motion and Residual Error.- 8 An Optimal Polygonal Boundary Encoding Scheme.- References.