Rational Points: Seminar Bonn/Wuppertal 1983/84 A Publication of the Max-Planck-Institut für Mathematik, Bonn
Autor Gerd Faltingsde Limba Germană Paperback – 1984
Preț: 479.25 lei
Nou
Puncte Express: 719
Preț estimativ în valută:
91.74€ • 96.30$ • 75.78£
91.74€ • 96.30$ • 75.78£
Carte tipărită la comandă
Livrare economică 30 ianuarie-13 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783528085933
ISBN-10: 3528085932
Pagini: 280
Ilustrații: 268 S.
Dimensiuni: 170 x 244 x 15 mm
Greutate: 0.45 kg
Ediția:1984
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany
ISBN-10: 3528085932
Pagini: 280
Ilustrații: 268 S.
Dimensiuni: 170 x 244 x 15 mm
Greutate: 0.45 kg
Ediția:1984
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany
Public țintă
ResearchCuprins
I: Moduli Spaces.- § 1 Introduction.- § 2 Generalities about moduli-Spaces.- § 3 Examples.- § 4 Metrics with logarithmic singularities.- § 5 The minimal compact if ication of Ag/?.- § 6 The toroidal compactification.- II: Heights.- § 1 The definition.- § 2 Néron-Tate heights.- § 3 Heights on the moduli-space.- § 4 Applications.- III: Some Facts from the Theory of Group Schemes.- § 0 Introduction.- § 1 Generalities on group schemes.- § 2 Finite group schemes.- § 3 p-divisible groups.- § 4 A theorem of Raynaud.- § 5 A theorem of Tate.- IV: Tate’s Conjecture on the Endomorphisms of Abelian Varieties.- § 1 Statements.- § 2 Reductions.- § 3 Heights.- § 4 Variants.- V: The Finiteness Theorems of Faltings.- § 1 Introduction.- § 2 The finiteness theorem for isogeny classes.- § 3 The finiteness theorem for isomorphism classes.- § 4 Proof of Mordell’s conjecture.- § 5 Siegel’s Theorem on integer points.- VI: Complements.- § 1 Introduction.- § 2 Preliminaries.- § 3 The Tate-conjecture.- § 4 The Shafarevich-conjecture.- § 5 Endomorphisms.- § 6 Effectivity.- VII: Intersection Theory on Arithmetic Surfaces.- § 0 Introduction.- § 1 Hermitian line bundies.- § 2 Arakelov-divisors and intersection theory.- § 3 Volume forms on IRr(X, ?).- § 4 Riemann-Roch.- § 5 The Hodge index theorem.