Cantitate/Preț
Produs

Reconstruction and Intelligent Control for Power Plant

Autor Chen Peng, Chuanliang Cheng, Ling Wang
en Limba Engleză Hardback – 22 sep 2022
The authors' innovative research ideas in power plant control are presented in this book. This book focuses on 1) cognition and reconstruction of the temperature field; 2) intelligent setting and learning of power plants; 3) energy efficiency optimization and intelligent control for power plants, and so on, using historical power plant operation data and creative methods such as reconstruction of the combustion field, deep reinforcement learning, and networked collaborative control. It could help researchers, industrial engineers, and graduate students in the areas of signal detection, image processing, and control engineering.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62407 lei  43-57 zile
  Springer Nature Singapore – 23 sep 2023 62407 lei  43-57 zile
Hardback (1) 63015 lei  43-57 zile
  Springer Nature Singapore – 22 sep 2022 63015 lei  43-57 zile

Preț: 63015 lei

Preț vechi: 74135 lei
-15% Nou

Puncte Express: 945

Preț estimativ în valută:
12060 12527$ 10017£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789811955730
ISBN-10: 9811955735
Pagini: 208
Ilustrații: XV, 208 p. 100 illus., 90 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.49 kg
Ediția:1st ed. 2023
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore

Cuprins

Introduction.- Adaptive mixed edge detection of furnace flame image.- Intelligent flame image segmentation of furnace flame image.- Reconstruction of temperature field based on limited flame image information.- Furnace temperature prediction based on optimized kernel extreme learning machine.- Process modeling of power plant.- Fuzzy K-means network based generalized predictive control for power plant.- Deep-neural-network based nonlinear predictive control for power plant.- Intelligent virtual reference feedback tuning based data driven control for power plant.

Notă biografică

Chen Peng received the Ph.D. degree in control theory and control engineering from the Chinese University of Mining Technology, Xuzhou, China, in 2002.
From November 2004 to January 2005, he was Research Associate with the University of Hong Kong, Hong Kong. From July 2006 to August 2007, he was Visiting Scholar with the Queensland University of Technology, Brisbane, QLD, Australia. From July 2011 to August 2012, he was Postdoctoral Research Fellow with Central Queensland University, Rockhampton, QLD, Australia. In 2012, he was appointed as Eastern Scholar with the Municipal Commission of Education, Shanghai, China, and joined Shanghai University, Shanghai, where he is currently Director with the Center of Networked Control Systems and Distinguished Professor. In 2018, he was appointed as Outstanding Academic Leader with the Municipal Commission of Science and Technology, Shanghai. His current research interests include networked control systems, intelligent control, optimizated control, and CPS.
Professor Peng is Associate Editor of a number of international journals, including the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, Information Sciences, and Transactions of the Institute of Measurement and Control and so on. He was named Highly Cited Researcher in 2020 and 2021 by Clarivate Analytics.
Chuanliang Cheng received the B.Sc. degree in automation from Shandong Technology and Business University, Yantai, China, in 2012, and the M.Sc. degree in control science and engineering from Qingdao University, Qingdao, China in 2017. He is currently pursuing the Ph.D. degree with the School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China. His current research interest includes modeling, optimization, and nonlinear model predictive control of power plants. Ling Wang received the Ph.D. degree from the East China University of Science and Technology, Shanghai, China, in 2007. From March 2012 toMarch 2013, he was Visiting Scholar with the University of Florida, Gainesville, USA. He is currently Professor with the School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China. He has authored or co-authored more than 80 publications. His current research interests include evolutionary computation, data-driven control, intelligent control, and machine learning.


Textul de pe ultima copertă

The authors' innovative research ideas in power plant control are presented in this book. This book focuses on 1) cognition and reconstruction of the temperature field; 2) intelligent setting and learning of power plants; 3) energy efficiency optimization and intelligent control for power plants, and so on, using historical power plant operation data and creative methods such as reconstruction of the combustion field, deep reinforcement learning, and networked collaborative control. It could help researchers, industrial engineers, and graduate students in the areas of signal detection, image processing, and control engineering.

Caracteristici

Is the first book to introduce the cognition and reconstruction of furnace combustion field in power plant Uses intelligent methods to realize the optimal learning of the characteristics of power plant Offers originally an in-depth examination of online intelligent control