Recurrent Neural Networks for Short-Term Load Forecasting: An Overview and Comparative Analysis: SpringerBriefs in Computer Science
Autor Filippo Maria Bianchi, Enrico Maiorino, Michael C. Kampffmeyer, Antonello Rizzi, Robert Jenssenen Limba Engleză Paperback – 17 noi 2017
Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures.
Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.
Din seria SpringerBriefs in Computer Science
- 20% Preț: 296.17 lei
- Preț: 475.83 lei
- 20% Preț: 325.63 lei
- Preț: 446.47 lei
- 20% Preț: 166.97 lei
- 20% Preț: 120.62 lei
- 20% Preț: 335.65 lei
- 20% Preț: 406.90 lei
- 20% Preț: 323.00 lei
- 20% Preț: 323.00 lei
- 20% Preț: 322.81 lei
- 20% Preț: 322.35 lei
- 20% Preț: 321.85 lei
- Preț: 375.45 lei
- 20% Preț: 232.68 lei
- 20% Preț: 323.00 lei
- 20% Preț: 324.17 lei
- 20% Preț: 322.17 lei
- 20% Preț: 322.50 lei
- 20% Preț: 323.34 lei
- 20% Preț: 324.17 lei
- 20% Preț: 323.46 lei
- 20% Preț: 322.17 lei
- 20% Preț: 322.02 lei
- 20% Preț: 323.46 lei
- Preț: 374.08 lei
- Preț: 341.50 lei
- 20% Preț: 324.49 lei
- Preț: 344.47 lei
- Preț: 376.80 lei
- Preț: 377.18 lei
- 20% Preț: 324.17 lei
- 20% Preț: 352.26 lei
- 20% Preț: 321.32 lei
- 20% Preț: 322.17 lei
- 20% Preț: 324.17 lei
- 20% Preț: 322.02 lei
- Preț: 374.46 lei
- 20% Preț: 320.21 lei
- 20% Preț: 323.34 lei
- 20% Preț: 324.17 lei
- 20% Preț: 231.84 lei
- 20% Preț: 294.95 lei
- 20% Preț: 322.50 lei
- Preț: 408.23 lei
- 20% Preț: 321.52 lei
- 20% Preț: 323.34 lei
- 20% Preț: 323.00 lei
- 20% Preț: 323.80 lei
- 20% Preț: 323.80 lei
Preț: 464.33 lei
Preț vechi: 580.41 lei
-20% Nou
Puncte Express: 696
Preț estimativ în valută:
88.86€ • 91.67$ • 75.21£
88.86€ • 91.67$ • 75.21£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319703374
ISBN-10: 3319703374
Pagini: 72
Ilustrații: IX, 72 p. 20 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.13 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3319703374
Pagini: 72
Ilustrații: IX, 72 p. 20 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.13 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Properties and Training in Recurrent Neural Networks.- Recurrent Neural Networks Architectures.- Other Recurrent Neural Networks Models.- Synthetic Time Series.- Real-World Load Time Series.- Experiments.- Conclusions.
Notă biografică
Dr. Filippo Maria Bianchi is a postdoctoral researcher in the Department of Physics and Technology at the Arctic University of Norway, Tromsø, Norway. Dr. Michael C. Kampffmeyer is a research fellow at the same institution. Dr. Robert Jenssen is an associate professor at the same institution. Dr. Enrico Maiorino is a research fellow in the Channing Division of Network Medicine at Harvard Medical School, Boston, MA, USA. Dr. Antonello Rizzi is an assistant professor in the Department of Information Engineering, Electronics and Telecommunications at the Sapienza University of Rome, Italy.
Caracteristici
Presents a comparative study on short-term load forecasting, using different classes of state-of-the-art recurrent neural networks Describes tests of the models on both controlled synthetic tasks and on real datasets Provides a general overview of the most important architectures, and defines guidelines for configuring the recurrent networks to predict real-valued time series Includes supplementary material: sn.pub/extras