Regression Analysis: Theory, Methods, and Applications: Springer Texts in Statistics
Autor Ashish Sen, Muni Srivastavaen Limba Engleză Hardback – 13 iul 1990
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 570.58 lei 6-8 săpt. | |
Springer – 23 dec 2011 | 570.58 lei 6-8 săpt. | |
Hardback (1) | 714.75 lei 6-8 săpt. | |
Springer – 13 iul 1990 | 714.75 lei 6-8 săpt. |
Din seria Springer Texts in Statistics
- 18% Preț: 695.25 lei
- Preț: 255.40 lei
- 23% Preț: 663.97 lei
- 20% Preț: 764.90 lei
- 20% Preț: 570.34 lei
- Preț: 359.53 lei
- 17% Preț: 525.25 lei
- 17% Preț: 428.24 lei
- 20% Preț: 697.45 lei
- Preț: 463.67 lei
- 20% Preț: 643.50 lei
- 19% Preț: 497.52 lei
- 20% Preț: 633.80 lei
- 15% Preț: 606.94 lei
- 15% Preț: 657.49 lei
- 20% Preț: 567.28 lei
- 15% Preț: 712.31 lei
- 20% Preț: 700.48 lei
- Preț: 400.59 lei
- 15% Preț: 632.24 lei
- Preț: 392.25 lei
- Preț: 391.88 lei
- 15% Preț: 567.54 lei
- Preț: 486.19 lei
- Preț: 395.42 lei
- 19% Preț: 626.91 lei
- 18% Preț: 921.07 lei
- 18% Preț: 725.18 lei
- Preț: 383.47 lei
- 18% Preț: 924.77 lei
- 15% Preț: 682.44 lei
- 18% Preț: 870.19 lei
- 15% Preț: 583.61 lei
- 23% Preț: 684.76 lei
- 19% Preț: 543.05 lei
- 18% Preț: 767.63 lei
- 15% Preț: 578.81 lei
- Preț: 411.12 lei
- 15% Preț: 637.31 lei
- 15% Preț: 663.34 lei
- 18% Preț: 791.08 lei
- Preț: 391.30 lei
- Preț: 396.91 lei
- 18% Preț: 737.76 lei
- 15% Preț: 583.61 lei
Preț: 714.75 lei
Preț vechi: 871.64 lei
-18% Nou
Puncte Express: 1072
Preț estimativ în valută:
136.80€ • 142.58$ • 113.88£
136.80€ • 142.58$ • 113.88£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387972114
ISBN-10: 0387972110
Pagini: 348
Ilustrații: XVI, 348 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.68 kg
Ediția:1990
Editura: Springer
Colecția Springer
Seria Springer Texts in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387972110
Pagini: 348
Ilustrații: XVI, 348 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.68 kg
Ediția:1990
Editura: Springer
Colecția Springer
Seria Springer Texts in Statistics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Introduction.- 1.1 Relationships.- 1.2 Determining Relationships: A Specific Problem.- 1.3 The Model.- 1.4 Least Squares.- 1.5 Another Example and a Special Case.- 1.6 When Is Least Squares a Good Method?.- 1.7 A pleasure of Fit for Simple Regression.- 1.8 Mean and Variance of b0 and b1.- 1.9 Confidence Intervals and Tests.- 1.10 Predictions.- 2 Multiple Regression.- 2.1 Introduction.- 2.2 Regression Model in Matrix Notation.- 2.3 Least Squares Estimates.- 2.4 Examples 31 2..- 2.6 Mean and Variance of Estimates Under G-M Conditions.- 2.7 Estimation of ?.- 2.8 Measures of Fit 39?2.- 2.9 The Gauss-Markov Theorem.- 2.10 The Centered Model.- 2.11 Centering and Scaling.- 2.12 *Constrained Least Squares.- 3 Tests and Confidence Regions.- 3.1 Introduction.- 12 Linear Hypothesis.- 3.3 *Likelihood Ratio Test.- 3.4 *Distribution of Test Statistic.- 3.5 Two Special Cases.- 3.6 Examples.- 3.7 Comparison of Repression Equations.- 3.8 Confidence Intervals and Regions.- 4 Indicator Variables.- 4.1 Introduction.- 4.2 A Simple Application.- 4.3 Polychotomous Variables.- 4.4 Continuous and Indicator Variables.- 4.5 Broken Line Regression.- 4.6 Indicators as Dependent Variables.- 5 The Normality Assumption.- 5.1 Introduction.- 5.2 Checking for Normality.- 5.3 Invoking Large Sample Theory.- 5.4 *Bootstrapping.- 5.5 *Asymptotic Theory.- 6 Unequal Variances.- 6.1 Introduction.- 6.2 Detecting Heteroscedasticity.- 6.3 Variance Stabilizing Transformations.- 6.4 Weighing.- 7 *Correlated Errors.- 7.1 Introduction.- 7.2 Generalized Least Squares: Case When ? Is Known.- 7.3 Estimated Generalized Least Squares.- 7.4 Nested Errors.- 7.5 The Growth Curve Model.- 7.6 Serial Correlation.- 7.7 Spatial Correlation.- 8 Outliers and Influential Observations.- 8.1 Introduction.- 8.2 The Leverage.- 8.3The Residuals.- 8.4 Detecting Outliers and Points That Do Not Belong to the Model 157.- 8.5 Influential Observations.- 8.6 Examples.- 9 Transformations.- 9.1 Introduction.- 9.2 Some Common Transformations.- 9.3 Deciding on the Need for Transformations.- 9.4 Choosing Transformations.- 10 Multicollinearity.- 10.1 Introduction.- 10.2 Multicollinearity and Its Effects.- 10.3 Detecting Multicollinearity.- 10.4 Examples.- 11 Variable Selection.- 11.1 Introduction.- 11.2 Some Effects of Dropping Variables.- 11.3 Variable Selection Procedures.- 11.4 Examples.- 12 *Biased Estimation.- 12.1 Introduction 2..- 12.2 Principal Component. Regression.- 12.3 Ridge Regression.- 12.4 Shrinkage Estimator.- A Matrices.- A.1 Addition and Multiplication.- A.2 The Transpose of a Matrix.- A.3 Null and Identity Matrices.- A.4 Vectors.- A.5 Rank of a Matrix.- A.6 Trace of a Matrix.- A.7 Partitioned Matrices.- A.8 Determinants.- A.9 Inverses.- A.10 Characteristic Roots and Vectors.- A.11 Idempotent Matrices.- A.12 The Generalized Inverse.- A.13 Quadratic Forms.- A.14 Vector Spaces.- Problems.- B Random Variables and Random Vectors.- B.1 Random Variables.- B.1.1 Independent. Random Variables.- B.1.2 Correlated Random Variables.- B.1.3 Sample Statistics.- B.1.4 Linear Combinations of Random Variables.- B.2 Random Vectors.- B.3 The Multivariate Normal Distribution.- B.4 The Chi-Square Distributions.- B.5 The F and t Distributions.- B.6 Jacobian of Transformations.- B.7 Multiple Correlation.- Problems.- C Nonlinear Least Squares.- C.1 Gauss-Newton Type Algorithms.- C.1.1 The Gauss-Newton Procedure.- C.1.2 Step Halving.- C.1.3 Starting Values and Derivatives.- C.1.4 Marquardt Procedure.- C.2 Some Other Algorithms.- C.2.1 Steepest Descent Method.- C.2.2 Quasi-Newton Algorithms.- C.2.3 The Simplex Method.- C.2.4 Weighting.- C.3 Pitfalls.- C.4 Bias, Confidence Regions and Measures of Fit.- C.5 Examples.- Problems.- Tables.- References.- Author Index.
Recenzii
"I found this to be the most complete and up-to-date regression text I have come across...this text has much to offer."
-Journal of the American Statistical
Association
"The material is presented in a lucid and easy-to-understand style...can be ranked as one of the best textbooks on regression in the market."
-mathermatical Reviews
"...a successful mix of theory and practice...It will serve nicely to teach both the logic behind regression and the data-analytic use of regression."
-SIAM Review
-Journal of the American Statistical
Association
"The material is presented in a lucid and easy-to-understand style...can be ranked as one of the best textbooks on regression in the market."
-mathermatical Reviews
"...a successful mix of theory and practice...It will serve nicely to teach both the logic behind regression and the data-analytic use of regression."
-SIAM Review
Caracteristici
Includes supplementary material: sn.pub/extras Request lecturer material: sn.pub/lecturer-material