Cantitate/Preț
Produs

Relational Knowledge Discovery

Autor M.E. Müller
en Limba Engleză Paperback – 20 iun 2012
What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He then uses this language to discuss traditional methods such as clustering and decision tree induction, before moving onto two previously underestimated topics that are just coming to the fore: rough set data analysis and inductive logic programming. Its clear and precise presentation is ideal for undergraduate computer science students. The book will also interest those who study artificial intelligence or machine learning at the graduate level. Exercises are provided and each concept is introduced using the same example domain, making it easier to compare the individual properties of different approaches.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 32872 lei  6-8 săpt.
  Cambridge University Press – 20 iun 2012 32872 lei  6-8 săpt.
Hardback (1) 47966 lei  6-8 săpt.
  Cambridge University Press – 20 iun 2012 47966 lei  6-8 săpt.

Preț: 32872 lei

Preț vechi: 41091 lei
-20% Nou

Puncte Express: 493

Preț estimativ în valută:
6291 6490$ 5324£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521122047
ISBN-10: 052112204X
Pagini: 280
Ilustrații: 50 b/w illus. 100 exercises
Dimensiuni: 173 x 247 x 15 mm
Greutate: 0.5 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom

Cuprins

1. Introduction; 2. Relational knowledge; 3. From data to hypotheses; 4. Clustering; 5. Information gain; 6. Knowledge and relations; 7. Rough set theory; 8. Inductive logic learning; 9. Ensemble learning; 10. The logic of knowledge; 11. Indexes and bibliography; Bibliography; Index.

Notă biografică


Descriere

Introductory textbook presenting relational methods in machine learning.