Resolution of Curve and Surface Singularities in Characteristic Zero: Algebra and Applications, cartea 4
Autor K. Kiyek, J.L. Vicenteen Limba Engleză Hardback – oct 2004
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 400.26 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 5 dec 2010 | 400.26 lei 6-8 săpt. | |
Hardback (1) | 416.64 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – oct 2004 | 416.64 lei 6-8 săpt. |
Din seria Algebra and Applications
- 18% Preț: 904.11 lei
- Preț: 379.09 lei
- Preț: 359.64 lei
- Preț: 359.96 lei
- 20% Preț: 394.07 lei
- 24% Preț: 685.38 lei
- 24% Preț: 643.22 lei
- Preț: 368.39 lei
- Preț: 371.58 lei
- 24% Preț: 652.82 lei
- 24% Preț: 927.56 lei
- Preț: 404.89 lei
- 24% Preț: 2000.38 lei
- 24% Preț: 591.77 lei
- 24% Preț: 829.42 lei
- 15% Preț: 583.78 lei
- 15% Preț: 707.13 lei
- 24% Preț: 639.98 lei
- 18% Preț: 900.49 lei
- 18% Preț: 1110.09 lei
- 18% Preț: 795.50 lei
- 18% Preț: 780.68 lei
- 15% Preț: 670.30 lei
- 18% Preț: 887.86 lei
- Preț: 395.63 lei
- Preț: 390.08 lei
- 15% Preț: 644.30 lei
Preț: 416.64 lei
Nou
Puncte Express: 625
Preț estimativ în valută:
79.74€ • 83.03$ • 67.39£
79.74€ • 83.03$ • 67.39£
Carte tipărită la comandă
Livrare economică 10-24 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781402020285
ISBN-10: 1402020287
Pagini: 483
Ilustrații: XXII, 486 p.
Dimensiuni: 210 x 297 x 30 mm
Greutate: 1.09 kg
Ediția:2004
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Algebra and Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 1402020287
Pagini: 483
Ilustrații: XXII, 486 p.
Dimensiuni: 210 x 297 x 30 mm
Greutate: 1.09 kg
Ediția:2004
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Algebra and Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I Valuation Theory.- 1 Marot Rings.- 2 Manis Valuation Rings.- 3 Valuation Rings and Valuations.- 4 The Approximation Theorem For Independent Valuations.- 5 Extensions of Valuations.- 6 Extending Valuations to Algebraic Overfields.- 7 Extensions of Discrete Valuations.- 8 Ramification Theory of Valuations.- 9 Extending Valuations to Non-Algebraic Overfields.- 10 Valuations of Algebraic Function Fields.- 11 Valuations Dominating a Local Domain.- II One-Dimensional Semilocal Cohen-Macaulay Rings.- 1 Transversal Elements.- 2 Integral Closure of One-Dimensional Semilocal Cohen-Macaulay Rings.- 3 One-Dimensional Analytically Unramified and Analytically Irreducible CM-Rings.- 4 Blowing up Ideals.- 5 Infinitely Near Rings.- III Differential Modules and Ramification.- 1 Introduction.- 2 Norms and Traces.- 3 Formally Unramified and Unramified Extensions.- 4 Unramified Extensions and Discriminants.- 5 Ramification For Quasilocal Rings.- 6 Integral Closure and Completion.- IV Formal and Convergent Power Series Rings.- 1 Formal Power Series Rings.- 2 Convergent Power Series Rings.- 3 Weierstraß Preparation Theorem.- 4 The Category of Formal and Analytic Algebras.- 5 Extensions of Formal and Analytic Algebras.- V Quasiordinary Singularities.- 1 Fractionary Power Series.- 2 The Jung-Abhyankar Theorem: Formal Case.- 3 The Jung-Abhyankar Theorem: Analytic Case.- 4 Quasiordinary Power Series.- 5 A Generalized Newton Algorithm.- 6 Strictly Generated Semigroups.- VI The Singularity Zq = XYp.- 1 Hirzebruch-Jung Singularities.- 2 Semigroups and Semigroup Rings.- 3 Continued Fractions.- 4 Two-Dimensional Cones.- 5 Resolution of Singularities.- VII Two-Dimensional Regular Local Rings.- 1 Ideal Transform.- 2 Quadratic Transforms and Ideal Transforms.- 3 Complete Ideals.- 4 Factorization ofComplete Ideals.- 5 The Predecessors of a Simple Ideal.- 6 The Quadratic Sequence.- 7 Proximity.- 8 Resolution of Embedded Curves.- VIII Resolution of Singularities.- 1 Blowing up Curve Singularities.- 2 Resolution of Surface Singularities I: Jung’s Method.- 3 Quadratic Dilatations.- 4 Quadratic Dilatations of Two-Dimensional Regular Local Rings.- 5 Valuations of Algebraic Function Fields in Two Variables.- 6 Uniformization.- 7 Resolution of Surface Singularities II: Blowing up and Normalizing.- Appendices.- A Results from Classical Algebraic Geometry.- 1 Generalities.- 1.1 Ideals and Varieties.- 1.2 Rational Functions and Maps.- 1.3 Coordinate Ring and Local Rings.- 1.4 Dominant Morphisms and Closed Embeddings.- 1.5 Elementary Open Sets.- 1.6 Varieties as Topological Spaces.- 1.7 Local Ring on a Subvariety.- 2 Affine and Finite Morphisms.- 3 Products.- 4 Proper Morphisms.- 4.1 Space of Irreducible Closed Subsets.- 4.3 Proper Morphisms.- 5 Algebraic Cones and Projective Varieties.- 6 Regular and Singular Points.- 7 Normalization of a Variety.- 8 Desingularization of a Variety.- 9 Dimension of Fibres.- 10 Quasifinite Morphisms and Ramification.- 10.1 Quasifinite Morphisms.- 10.2 Ramification.- 11 Divisors.- 12 Some Results on Projections.- 13 Blowing up.- 14 Blowing up: The Local Rings.- B Miscellaneous Results.- 1 Ordered Abelian Groups.- 1.1 Isolated Subgroups.- 1.2 Initial Index.- 1.3 Archimedean Ordered Groups.- 1.4 The Rational Rank of an Abelian Group.- 2 Localization.- 3 Integral Extensions.- 4 Some Results on Graded Rings and Modules.- 4.1 Generalities.- 4.3 Homogeneous Localization.- 4.4 Integral Closure of Graded Rings.- 5 Properties of the Rees Ring.- 6 Integral Closure of Ideals.- 6.1 Generalities.- 6.2 Integral Closure of Ideals.- 6.3 Integral Closure ofIdeals and Valuation Theory.- 7 Decomposition Group and Inertia Group.- 8 Decomposable Rings.- 9 The Dimension Formula.- 10 Miscellaneous Results.- 10.1 The Chinese Remainder Theorem.- 10.2 Separable Noether Normalization.- 10.3 The Segre Ideal.- 10.4 Adjoining an Indeterminate.- 10.5 Divisor Group and Class Group.- 10.6 Calculating a Multiplicity.- 10.7 A Length Formula.- 10.8 Quasifinite Modules.- 10.9 Maximal Primary Ideals.- 10.10 Primary Decomposition in Non-Noetherian Rings.- 10.11 Discriminant of a Polynomial.- Index of Symbols.
Recenzii
From the reviews:
"As indicated in the title … describes different methods of resolution of singularities of curves and surfaces … . The first seven chapters are dedicated to developing the material … . The two appendixes, on algebraic geometry and commutative algebra, contain generalities and classical results needed in the previous chapters. This completes one of the aims of the authors: To write a book as self-contained as possible. ... In conclusion, the book is an interesting exposition of resolution of singularities in low dimensions … ." (Ana Bravo, Mathematical Reviews, 2005e)
"The monograph presents a modern theory of resolution of isolated singularities of algebraic curves and surfaces over algebraically closed fields of characteristic zero. … The exposition is self-contained and is supplied by an appendix, covering some classical algebraic geometry and commutative algebra." (Eugenii I. Shustin, Zentralblatt MATH, Vol. 1069 (20), 2005)
"As indicated in the title … describes different methods of resolution of singularities of curves and surfaces … . The first seven chapters are dedicated to developing the material … . The two appendixes, on algebraic geometry and commutative algebra, contain generalities and classical results needed in the previous chapters. This completes one of the aims of the authors: To write a book as self-contained as possible. ... In conclusion, the book is an interesting exposition of resolution of singularities in low dimensions … ." (Ana Bravo, Mathematical Reviews, 2005e)
"The monograph presents a modern theory of resolution of isolated singularities of algebraic curves and surfaces over algebraically closed fields of characteristic zero. … The exposition is self-contained and is supplied by an appendix, covering some classical algebraic geometry and commutative algebra." (Eugenii I. Shustin, Zentralblatt MATH, Vol. 1069 (20), 2005)