Revealing Uncharted Biology with Single Cell Multiplex Proteomic Technologies: Applications
Editat de Wendy Fantlen Limba Engleză Paperback – 27 iun 2024
Healthy tissues and organs rely on the precise coordination of diverse cell types, each responding to external and internal signals. Disease disrupts this coordination. Since proteins drive cellular function, analyzing their abundance and activation states in single cells helps identify key cell populations in health and disease. Bulk protein analyses mask critical differences between individual cells. Additionally, the arrangement of cells into neighborhoods through cell-cell interactions is essential for tissue function. Over the last decade, single-cell proteomic phenotyping combined with positional information has become crucial for understanding biology in health and disease. This has led to the development of multiple technology platforms, profoundly impacting fields including developmental biology, cancer biology, immunology, neuroscience, and drug discovery.
This book focuses on the application of single-cell multiplex proteomic platforms to various biological systems. These platforms have proved to be essential in biomedical research, advancing our understanding of complex biological systems at the cellular level. Compelling studies where authors use these technologies to answer previously unanswerable questions are featured. Exploring this "Uncharted Biology" opens new avenues for scientific inquiry and clinical translation, covering areas including oncology, immunology, metabolomics, stem cell research, preclinical models, and translational research. The initial chapters discuss incorporating these technologies into core facilities and consortia, providing access for multiple users and integrating datasets from other omics technologies. The following chapters cover applications in diverse areas such as muscle stem cell function in skeletal muscle regeneration, metabolic regulome profiling, translational studies, developing predictive biomarkers for patients receiving immune checkpoint inhibitors, and pre-clinical studies of lung cancer. These applications demonstrate how advanced single cell proteomic technologies are reshaping our understanding of complex biological systems and enhancing clinical translation.
Revealing Uncharted Biology with Single Cell Multiplex Proteomic Technologies: Applications highlights the transformative benefits of single-cell proteomics, offering insights into cellular mechanisms underlying health and disease and inspiring further exploration into "Uncharted Biology." It is an essential resource for researchers, clinicians, and students aiming to advance biomedical science and improve therapeutic outcomes.
- Provides insights into the path to success of key research articles based on Multiplex Single-Cell analysis techniques results
- Contains detailed method information
- Discusses strengths and limitations of techniques applied to each research domain covered
- Includes discussions on the failures encountered along the research path and how to avoid them
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 709.65 lei 5-7 săpt. | +73.02 lei 7-11 zile |
ELSEVIER SCIENCE – 27 iun 2024 | 709.65 lei 5-7 săpt. | +73.02 lei 7-11 zile |
ELSEVIER SCIENCE – 27 iun 2024 | 823.52 lei 5-7 săpt. |
Preț: 709.65 lei
Preț vechi: 929.91 lei
-24% Nou
Puncte Express: 1064
Preț estimativ în valută:
135.83€ • 142.71$ • 114.16£
135.83€ • 142.71$ • 114.16£
Carte tipărită la comandă
Livrare economică 04-18 martie
Livrare express 04-08 februarie pentru 83.01 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128222133
ISBN-10: 0128222131
Pagini: 202
Ilustrații: 100 illustrations (50 in full color)
Dimensiuni: 191 x 235 x 15 mm
Greutate: 0.44 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0128222131
Pagini: 202
Ilustrații: 100 illustrations (50 in full color)
Dimensiuni: 191 x 235 x 15 mm
Greutate: 0.44 kg
Editura: ELSEVIER SCIENCE
Public țintă
PhD students, young researchers and junior faculty members in biomedical sciences, Immunology and Cancer ResearchersCuprins
1. Assessing global immune competence using CyTOF
2. Contributing to Cconsortia human tissue mapping efforts with multiplexed imaging
3. Novel single-cell technologies advance our mechanistic understanding of muscle stem cell function in skeletal muslce regeneration
4. Spatial quantification of cellular metabolism in tissues by metabolic regulome profiling
5. From bench to bedside: practical considerations for translational studies using single-cell mass cytometry
6. Developing predictive biomarkers for endometrial cancer immunotherapy with mass cytometry
7. Imaging mass cytometry in pre-clinical studies of lung cancer
2. Contributing to Cconsortia human tissue mapping efforts with multiplexed imaging
3. Novel single-cell technologies advance our mechanistic understanding of muscle stem cell function in skeletal muslce regeneration
4. Spatial quantification of cellular metabolism in tissues by metabolic regulome profiling
5. From bench to bedside: practical considerations for translational studies using single-cell mass cytometry
6. Developing predictive biomarkers for endometrial cancer immunotherapy with mass cytometry
7. Imaging mass cytometry in pre-clinical studies of lung cancer