Cantitate/Preț
Produs

Risk-Based Planning and Operation Strategy Towards Short Circuit Resilient Power Systems

Autor Chengjin Ye, Chao Guo, Yi Ding
en Limba Engleză Hardback – 2 mar 2023
This book focuses on the comprehensive prevention and control methods for short-circuit faults in power systems. Based on the quantification method of power system short-circuit fault risk considering extreme meteorological disasters, this book carries out theoretical research on optimal control of power system short-circuit faults at the planning and operation levels. The establishment of a comprehensive index system for short-circuit safety level of large power grids from several sides and the realization of a panoramic display of consequences of short-circuit faults in power grids are one of the features of this book, which are especially suitable for readers interested in learning about short-circuit fault solutions in power systems. This book can benefit researchers, engineers, and graduate students in the fields of electrical engineering, power electronics, and energy engineering.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62467 lei  38-44 zile
  Springer Nature Singapore – 3 mar 2024 62467 lei  38-44 zile
Hardback (1) 74181 lei  3-5 săpt.
  Springer Nature Singapore – 2 mar 2023 74181 lei  3-5 săpt.

Preț: 74181 lei

Preț vechi: 90465 lei
-18% Nou

Puncte Express: 1113

Preț estimativ în valută:
14208 15404$ 11811£

Carte disponibilă

Livrare economică 11-25 noiembrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789811997242
ISBN-10: 9811997241
Pagini: 184
Ilustrații: XI, 184 p. 103 illus., 97 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.48 kg
Ediția:2023
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore

Cuprins

Risk Evaluation of Short-circuit Fault in Power System.- Risk-based Optimal Configuration of Fault Current Limiter in Power System.- 5G-based Optimal Configuration of Centralized Fault Current Limiter in Power System.- A Multi-state Model for Power System Resilience Enhancement against Short-circuit Faults.- Voltage Violations Assessment considering Reactive Power Compensation Provided by Smart Inverters.- A Distributed MPC to Exploit Reactive Power V2G for Real-Time Voltage Regulation.- A Stochastic Unit Commitment towards Frequency Resilience of Power Systems.- Data-driven Reserve Allocation with Frequency Security Constraint Considering Inverter Air Conditioners.- Iterative Online Fault Identification Scheme for High Voltage Circuit Breaker.

Notă biografică

Chengjin Ye received the B.S. (2010) and Ph. D (2015) degrees from the Zhejiang University, China both in electrical engineering. He served as a distribution system engineer for the Economics Institute of State Grid Zhejiang Electric Power Co., Ltd. from 2015 to 2017. He was a postdoc researcher in Zhejiang University from 2017 to 2019. From 2020, he serves as a Tenure-Track Professor with the College of Electrical Engineering, Zhejiang University, Hangzhou, China. His research areas include power system planning and operation; Grid resilience enhancement and integration of demand resources into power system operation.
 
Chao Guo received the B.S. (2017) and PH. D (2022) degrees in electrical engineering from Shandong University, Jinan, China, and Zhejiang University, Hangzhou, China. From 2022, he serves as a Research Professor with the School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, China. Hisresearch interests include reliability analysis, short-circuit current limitation, and the power market.


Yi Ding (M’10) received B.S. (2002) and PH. D (2007) degrees in electrical engineering from Shanghai Jiaotong University, Shanghai, China, and Nanyang Technological University, Singapore, respectively. He is a Professor with the College of Electrical Engineering, Zhejiang University, Hangzhou, China. His current research interests include power systems reliability analysis incorporating renewable energy resources, smart grid performance analysis, and engineering systems reliability modeling and optimization.

Textul de pe ultima copertă

This book focuses on the comprehensive prevention and control methods for short-circuit faults in power systems. Based on the quantification method of power system short-circuit fault risk considering extreme meteorological disasters, this book carries out theoretical research on optimal control of power system short-circuit faults at the planning and operation levels. The establishment of a comprehensive index system for short-circuit safety level of large power grids from several sides and the realization of a panoramic display of consequences of short-circuit faults in power grids are one of the features of this book, which are especially suitable for readers interested in learning about short-circuit fault solutions in power systems. This book can benefit researchers, engineers, and graduate students in the fields of electrical engineering, power electronics, and energy engineering.

Caracteristici

The methodology for short-circuit risk assessment of power systems is proposed The model for the optimal configuration of fault current limiters at the planning level is developed The short-circuit risk control model with multidimensional consequences of short-circuit