Cantitate/Preț
Produs

Robust Data Mining: SpringerBriefs in Optimization

Autor Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis
en Limba Engleză Paperback – 21 noi 2012
Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise.
This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of robust data mining research field and presents  the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems.
This brief will appeal to theoreticians and data miners working in this field.
Citește tot Restrânge

Din seria SpringerBriefs in Optimization

Preț: 37622 lei

Nou

Puncte Express: 564

Preț estimativ în valută:
7199 7535$ 5992£

Carte tipărită la comandă

Livrare economică 31 martie-14 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781441998774
ISBN-10: 1441998772
Pagini: 72
Ilustrații: XII, 59 p. 6 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.14 kg
Ediția:2013
Editura: Springer
Colecția Springer
Seria SpringerBriefs in Optimization

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Introduction.- 2. Least Squares Problems.- 3. Principal Component Analysis.- 4. Linear Discriminant Analysis.- 5. Support Vector Machines.- 6. Conclusion.

Recenzii

From the reviews:
“The goal of the book is to provide a guide for junior researchers interested in pursuing theoretical research in data mining and robust optimization and has been developed so that each chapter can be studied independent of the others.” (Hans Benker, Zentralblatt MATH, Vol. 1260, 2013)

Caracteristici

Summarizes the latest applications of robust optimization in data mining An essential accompaniment for theoreticians and data miners Includes supplementary material: sn.pub/extras