Robust Estimation and Applications in Robotics: Foundations and Trends (R) in Robotics
Autor Michael Bosse, Gabriel Agamennoni, Igor Gilitschenskien Limba Engleză Paperback – 27 dec 2016
Solving estimation problems is a fundamental component of numerous robotics applications. Prominent examples involve pose estimation, point cloud alignment, and object tracking. Algorithms for solving these estimation problems need to cope with new challenges due to an increased use of potentially poor low-cost sensors, and an ever growing deployment of robotic algorithms in consumer products, which operate in potentially unknown environments. These algorithms need to be capable of being robust against strong nonlinearities, high uncertainty levels, and numerous outliers. However, particularly in robotics, the Gaussian assumption is prevalent in solutions to multivariate parameter estimation problems without providing the desired level of robustness.
Robust Estimation and Applications in Robotics sets out to address the aforementioned challenges by providing an introduction to robust estimation with a particular focus on robotics. It starts by providing a concise overview of the theory of M-estimation. M-estimators share many of the convenient properties of least-squares estimators, and at the same time are much more robust to deviations from the Gaussian model assumption. It goes on to present several example applications where M-Estimation is used to increase robustness against nonlinearities and outliers.
Robust Estimation and Applications in Robotics is an ideal introduction to robust statistics that only requires preliminary knowledge of probability theory. It also includes examples of robotics applications where robust statistical tools make a difference.
Preț: 293.06 lei
Nou
56.08€ • 59.31$ • 46.78£
Carte tipărită la comandă
Livrare economică 28 decembrie 24 - 11 ianuarie 25
Specificații
ISBN-10: 168083214X
Pagini: 58
Dimensiuni: 156 x 234 x 3 mm
Greutate: 0.1 kg
Editura: Now Publishers Inc
Seria Foundations and Trends (R) in Robotics