Cantitate/Preț
Produs

Robust Recognition via Information Theoretic Learning: SpringerBriefs in Computer Science

Autor Ran He, Baogang Hu, Xiaotong Yuan, Liang Wang
en Limba Engleză Paperback – 9 sep 2014
This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.
The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.
Citește tot Restrânge

Din seria SpringerBriefs in Computer Science

Preț: 29825 lei

Preț vechi: 37281 lei
-20% Nou

Puncte Express: 447

Preț estimativ în valută:
5708 5923$ 4771£

Carte tipărită la comandă

Livrare economică 12-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319074153
ISBN-10: 3319074156
Pagini: 121
Ilustrații: XI, 110 p. 29 illus., 25 illus. in color.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.19 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria SpringerBriefs in Computer Science

Locul publicării:Cham, Switzerland

Public țintă

Research

Cuprins

Introduction.- M-estimators and Half-quadratic Minimization.- Information Measures.- Correntropy and Linear Representation.- ℓ1 Regularized Correntropy.- Correntropy with Nonnegative Constraint.

Caracteristici

Includes supplementary material: sn.pub/extras