Cantitate/Preț
Produs

Security and Artificial Intelligence: A Crossdisciplinary Approach: Lecture Notes in Computer Science, cartea 13049

Editat de Lejla Batina, Thomas Bäck, Ileana Buhan, Stjepan Picek
en Limba Engleză Paperback – 8 apr 2022
AI has become an emerging technology to assess security and privacy, with many challenges and potential solutions at the algorithm, architecture, and implementation levels. So far, research on AI and security has looked at subproblems in isolation but future solutions will require sharing of experience and best practice in these domains. The editors of this State-of-the-Art Survey invited a cross-disciplinary team of researchers to a Lorentz workshop in 2019 to improve collaboration in these areas. Some contributions were initiated at the event, others were developed since through further invitations, editing, and cross-reviewing. This contributed book contains 14 invited chapters that address side-channel attacks and fault injection, cryptographic primitives, adversarial machine learning, and intrusion detection. The chapters were evaluated based on their significance, technical quality, and relevance to the topics of security and AI, and each submission was reviewed in single-blindmode and revised.

 
Citește tot Restrânge

Din seria Lecture Notes in Computer Science

Preț: 53543 lei

Preț vechi: 66928 lei
-20% Nou

Puncte Express: 803

Preț estimativ în valută:
10246 10633$ 8564£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030987947
ISBN-10: 3030987949
Pagini: 361
Ilustrații: X, 361 p. 43 illus., 28 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.52 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Computer Science

Locul publicării:Cham, Switzerland

Cuprins

AI for Cryptography.- Artificial Intelligence for the Design of Symmetric Cryptographic Primitives.- Traditional Machine Learning Methods for Side-Channel Analysis.- Deep Learning on Side-Channel Analysis.- Artificial Neural Networks and Fault Injection Attacks.- Physically Unclonable Functions and AI: Two Decades of Marriage.- AI for Authentication and Privacy.- Privacy-Preserving Machine Learning using Cryptography.- Machine Learning Meets Data Modification: the Potential of Pre-processing for Privacy Enhancement.- AI for Biometric Authentication Systems.- Machine Learning and Deep Learning for Hardware Fingerprinting. - AI for Intrusion Detection.- Intelligent Malware Defenses.- Open-World Network Intrusion Detection.- Security of AI.- Adversarial Machine Learning.- Deep Learning Backdoors. - On Implementation-level Security of Edge-based Machine Learning Models.

Textul de pe ultima copertă

AI has become an emerging technology to assess security and privacy, with many challenges and potential solutions at the algorithm, architecture, and implementation levels. So far, research on AI and security has looked at subproblems in isolation but future solutions will require sharing of experience and best practice in these domains. The editors of this State-of-the-Art Survey invited a cross-disciplinary team of researchers to a Lorentz workshop in 2019 to improve collaboration in these areas. Some contributions were initiated at the event, others were developed since through further invitations, editing, and cross-reviewing. This contributed book contains 14 invited chapters that address side-channel attacks and fault injection, cryptographic primitives, adversarial machine learning, and intrusion detection. The chapters were evaluated based on their significance, technical quality, and relevance to the topics of security and AI, and each submission was reviewed in single-blindmode and revised.

 

Caracteristici

Cross-disciplinary researchers demonstrate collaborative approaches deals with security and privacy problems at algorithm, architecture, and implementation level Content valuable for researchers and practitioners in academia and industry