Selected Papers of Demetrios G. Magiros: Applied Mathematics, Nonlinear Mechanics, and Dynamical Systems Analysis
Editat de S.G. Tzafestasen Limba Engleză Paperback – 23 aug 2014
Preț: 400.65 lei
Nou
Puncte Express: 601
Preț estimativ în valută:
76.68€ • 79.75$ • 64.26£
76.68€ • 79.75$ • 64.26£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401088695
ISBN-10: 9401088691
Pagini: 540
Ilustrații: XV, 518 p.
Dimensiuni: 152 x 229 x 28 mm
Greutate: 0.71 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401088691
Pagini: 540
Ilustrații: XV, 518 p.
Dimensiuni: 152 x 229 x 28 mm
Greutate: 0.71 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I Applied Mathematics and Modelling.- II Nonlinear Mechanics.- 1. Subharmonic Oscillations and Principal Modes.- 12. Subharmonics of any order in case of nonlinear restoring force, pt. I. Proc. Athens Acad. Sci., V. 32 (1957): 77–85 [6].- 13. Subharmonics of order one third in the case of cubic restoring force, pt. II. Proc. Athens Acad. Sci., V. 32 (1957): 101–108 [7].- 14. Remarks on a problem of subharmonics. Proc. Athens Acad. Sci., V. 32 (1957): 143–146 [8].- 15. On the singularities of a system of differential equations, where the time figures explicitly. Proc. Athens Acad. Sci., V. 32 (1957): 448–451 [9].- 16. Subharmonics of any order in nonlinear systems of one degree of freedom: application to subharmonics of order 1/3. Inf. and Control, V. 1, no. 3 (1958): 198–227 [10].- 17. On a problem of nonlinear mechanics. Inf. and Control, V. 2, no. 3 (1959): 297–309; Also Proc. Athens Acad. Sci., V. 34 (1959): 238–242 [11].- 18. A method for defining principal modes of nonlinear systems utilizing infinite determinants (I). Proc. Natl. Acad. Sci., U.S., V. 46, no. 12 (1960): 1608–1611 [14].- 19. A method for defining principal modes of nonlinear systems utilizing infinite determinants (II). Proc. Natl. Acad. Sci., U.S., V. 47, no. 6 (1961): 883–887 [15].- 20. Method for defining principal modes of nonlinear systems utilizing infinite determinants. J. Math. Phys., V. 2, no. 6 (1961): 869–875 [17].- 21. On the convergence of series related to principal modes of nonlinear systems. Proc. Acad. of Athens, V. 38 (1963): 33–36 [19].- 2. Celestial and Orbital Mechanics.- 22. The motion of a projectile around the earth under the influence of the earth’s gravitational attraction and a thrust. Proc. Athens Acad. Sci., V. 35 (1960): 96–103 [12].- 23. TheKeplerian orbit of a projectile around the earth, after the thrust is suddenly removed. Proc. Athens Acad. Sci., V. 35 (1960): 191–202 [13].- 24. On the convergence of the solution of a special two-body problem. Proc. Acad. of Athens, V. 38 (1963): 36–39 [20].- 25. The impulsive force required to effectuate a new orbit through a given point in space. J. Franklin Inst., V. 276, no. 6 (1963): 475–489; Proc. XIVth Intl. Astron. Congress, Paris, 1963 [21].- 26. Motion in a Newtonian forced field modified by a general force, (I). J. Franklin Inst., V. 278, no. 6 (1964): 407–416; Proc. XVth Intl. Astron. Congress, Warsaw, 1964 [22].- 27. Motion in a Newtonian force field modified by a general force (II). J. Franklin Inst., V. 278 (1964): 349–355. XVIth Int. Astron. Congress, Athens, Greece (1965): [23].- 28. Motion in a Newtonian force field modified by a general force, (III). Application: the entry problem (with G. Reehl). XVIIth Intl. Astron. Congress, Madrid (1966): 149–154 [26].- 29. The entry problem (with G. Reehl), Proc. Acad. of Athens, V. 41 (1966): 246–251 [27].- III Dynamical Systems Analysis.- 1. Stability Analysis.- 30. On the stability definitions of dynamical systems. Proc. Natl. Acad. Sci. (U.S.), V. 53, no. 6 (1965): 1288–1294 [24].- 31. Stability concepts of dynamical systems. Inf. and Control, V. 9, no. 5 (1966): 531–548 [28].- 32. Attitude stability of a spherical satellite (with A. J. Dennison). J. Franklin Inst., V. 286, no. 3 (1968): 193–203; Bull. Amer. Phys. Soc., ser. 2, V. 12, no. 3 (1967): p. 288 (Abstract) [33].- 33. Stability concepts of solutions of differential equations with deviating arguments. Proc. Acad. of Athens, V. 46 (1971): 273–278 [42].- 34. Remarks on stability concepts of solutions of dynamical systems. Proc.Acad. of Athens, V. 49 (1974): 408–416 [44].- 35. Stability Concepts of dynamical systems. Philadelphia: Genl. Electric Co., R.S.D., 1980 [54].- 2. Precessional Phenomena.- 36. On a class of precessional phenomena and their stability in the sense of Liapunov, Poincaré and Lagrange. Proc. VIIIth Intl. Symp. on Space, Tech. Sci., Tokyo (1969): 1163–1170 [35].- 37. On the helicoid precession: its stability and an application to a re-entry problem (with G. Reehl.). Proc. XXth Intl. Astron. Congress, Buenos Aires, Argentina (1969): 491–496 [37].- 38. Orientation of the angular momentum vector of a space vehicle at the end of spin-up. Proc. XXIInd Intl. Astron. Congress, Brussels, Belgium, 1971 [41].- 39. The stability of a class of helicoid precessions in the sense of Liapunov and Poincaré. Proc. Acad. of Athens, V. 17 (1972): 102–110 [43].- 3. Separatrices of Dynamical Systems.- 40. On the separatrices of dynamical systems, Proc. Athens Acad. Sci., V. 54 (1979): 264–287 [52].- 41. Separatrices of dynamical systems. Proc. IXth Conf. on Nonlinear Oscillations, Kiev., 1981 (Yu.A. Mitropolsky, ed.), Ukrainian Acad. Sci. (Math. Inst.) Kiev. Naukova Dumka (1984): 280–287.- Appendix: Papers in Russian.- Biographical note of D.G. Magiros.- Complete chronological list of Magiros’ publications.- Magiros’ unpublished works.