Reduced Order Methods for Modeling and Computational Reduction: MS&A, cartea 9
Editat de Alfio Quarteroni, Gianluigi Rozzaen Limba Engleză Hardback – 12 dec 2013
This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 642.83 lei 6-8 săpt. | |
Springer International Publishing – 17 sep 2016 | 642.83 lei 6-8 săpt. | |
Hardback (1) | 651.51 lei 6-8 săpt. | |
Springer International Publishing – 12 dec 2013 | 651.51 lei 6-8 săpt. |
Din seria MS&A
- 18% Preț: 1023.11 lei
- Preț: 393.52 lei
- 15% Preț: 654.77 lei
- Preț: 394.51 lei
- 15% Preț: 652.64 lei
- 15% Preț: 589.65 lei
- Preț: 394.87 lei
- 15% Preț: 667.38 lei
- 18% Preț: 906.79 lei
- 15% Preț: 706.30 lei
- 18% Preț: 902.55 lei
- 18% Preț: 1013.16 lei
- 15% Preț: 599.14 lei
- Preț: 398.35 lei
- 15% Preț: 700.10 lei
- Preț: 395.63 lei
- Preț: 387.38 lei
- 15% Preț: 584.10 lei
Preț: 651.51 lei
Preț vechi: 766.49 lei
-15% Nou
Puncte Express: 977
Preț estimativ în valută:
124.70€ • 129.69$ • 104.50£
124.70€ • 129.69$ • 104.50£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319020891
ISBN-10: 3319020897
Pagini: 348
Ilustrații: X, 334 p. 79 illus.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.73 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria MS&A
Locul publicării:Cham, Switzerland
ISBN-10: 3319020897
Pagini: 348
Ilustrații: X, 334 p. 79 illus.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.73 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria MS&A
Locul publicării:Cham, Switzerland
Public țintă
Professional/practitionerCuprins
1 W. H. A. Schilders, A. Lutowska: A novel approach to model order reduction for coupled multiphysics problems.- 2 A. C. Ionita, A. C. Antoulas: Case study. Parametrized Reduction using Reduced-Basis and the Loewner Framework.- 3 M. Bebendorf, Y. Maday, B. Stamm: Comparison of some reduced representation approximations.- 4 H. Antil, M. Heinkenschloss, D. C. Sorensen: Application of the Discrete Empirical Interpolation Method to Reduced Order Modeling of Nonlinear and Parametric System.- 5 K. Urban, S. Volkwein, O. Zeeb: Greedy Sampling using Nonlinear Optimization.- 6 P. Benner, L. Feng: A Robust Algorithm for Parametric Model Order Reduction based on Implicit Moment Matching.- 7 F. Chen, J. S. Hesthaven, X. Zhu: On the use of reduced basis methods to accelerate and stabilize the Parareal method.- 8 C. Farhat, D. Amsallem: On the stability of reduced-order linearized computational fluid dynamics models based on POD and Galerkin projection: descriptor vs non-descriptor forms.- 9 T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza: Model Order Reduction in Fluid Dynamics: Challenges and Perspectives.- 10 L. Grinberg, M. Deng, A. Yakhot, G. Karniadakis: Window Proper Orthogonal Decomposition. Application to Continuum and Atomistic Data.- 11 M. Bergmann, T. Colin, A. Iollo, D. Lombardi, O. Saut, H. Telib: Reduced order models at work in Aeronautics and Medicine.
Textul de pe ultima copertă
This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics.
Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects.
This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.
This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.
Caracteristici
A complete review on the state of the art of model order reduction advances and developments A gallery of application examples on reduced order modeling in computational science and engineering It covers several topics and techniques by leading experts Includes supplementary material: sn.pub/extras