Cantitate/Preț
Produs

Selfsimilar Processes: Princeton Series in Applied Mathematics

Autor Paul Embrechts
en Limba Engleză Hardback – 14 aug 2002
The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity translates into the equality in distribution between the process under a linear time change and the same process properly scaled in space, a simple scaling property that yields a remarkably rich theory with far-flung applications. After a short historical overview, this book describes the current state of knowledge about selfsimilar processes and their applications. Concepts, definitions and basic properties are emphasized, giving the reader a road map of the realm of selfsimilarity that allows for further exploration. Such topics as noncentral limit theory, long-range dependence, and operator selfsimilarity are covered alongside statistical estimation, simulation, sample path properties, and stochastic differential equations driven by selfsimilar processes. Numerous references point the reader to current applications. Though the text uses the mathematical language of the theory of stochastic processes, researchers and end-users from such diverse fields as mathematics, physics, biology, telecommunications, finance, econometrics, and environmental science will find it an ideal entry point for studying the already extensive theory and applications of selfsimilarity.
Citește tot Restrânge

Din seria Princeton Series in Applied Mathematics

Preț: 49905 lei

Preț vechi: 61612 lei
-19% Nou

Puncte Express: 749

Preț estimativ în valută:
9550 9910$ 7982£

Carte tipărită la comandă

Livrare economică 17-31 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780691096278
ISBN-10: 0691096279
Pagini: 128
Dimensiuni: 171 x 241 x 14 mm
Greutate: 0.35 kg
Ediția:New.
Editura: Princeton University Press
Seria Princeton Series in Applied Mathematics

Locul publicării:Princeton, United States

Notă biografică

Paul Embrechts is Professor of Mathematics at the Swiss Federal Institute of Technology (ETHZ), Zürich, Switzerland. He is the author of numerous scientific papers on stochastic processes and their applications and the coauthor of the influential book on Modelling of Extremal Events for Insurance and Finance. Makoto Maejima is Professor of Mathematics at Keio University, Yokohama, Japan. He has published extensively on selfsimilarity and stable processes.

Descriere

The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. With an historical overview, this book describes the state of knowledge about selfsimilar processes and their applications. It emphasizes concepts, definitions and basic properties, giving the reader a road map of the realm of selfsimilarity.