Semi-Supervised Dependency Parsing
Autor Wenliang Chen, Min Zhangen Limba Engleză Paperback – 23 oct 2016
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 373.72 lei 6-8 săpt. | |
Springer Nature Singapore – 23 oct 2016 | 373.72 lei 6-8 săpt. | |
Hardback (1) | 380.72 lei 6-8 săpt. | |
Springer Nature Singapore – 27 iul 2015 | 380.72 lei 6-8 săpt. |
Preț: 373.72 lei
Nou
Puncte Express: 561
Preț estimativ în valută:
71.56€ • 74.51$ • 59.37£
71.56€ • 74.51$ • 59.37£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789811012341
ISBN-10: 9811012342
Ilustrații: VIII, 144 p. 61 illus., 13 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.23 kg
Ediția:Softcover reprint of the original 1st ed. 2015
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore
ISBN-10: 9811012342
Ilustrații: VIII, 144 p. 61 illus., 13 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.23 kg
Ediția:Softcover reprint of the original 1st ed. 2015
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore
Cuprins
1 Introduction.- 2 Dependency Parsing Models.- 3 Overview of Semi-supervised Dependency Parsing Approaches.- 4 Training with Auto-parsed Whole Trees.- 5 Training with Lexical Information.- 6 Training with Bilexical Dependencies.- 7 Training with Subtree Structures.- 8 Training with Dependency Language Models.- 9 Training with Meta Features.- 10 Closing Remarks.
Textul de pe ultima copertă
This book presents a comprehensive overview of semi-supervised approaches to dependency parsing. Having become increasingly popular in recent years, one of the main reasons for their success is that they can make use of large unlabeled data together with relatively small labeled data and have shown their advantages in the context of dependency parsing for many languages. Various semi-supervised dependency parsing approaches have been proposed in recent works which utilize different types of information gleaned from unlabeled data. The book offers readers a comprehensive introduction to these approaches, making it ideally suited as a textbook for advanced undergraduate and graduate students and researchers in the fields of syntactic parsing and natural language processing.
Caracteristici
Presents a comprehensive overview of semi-supervised approaches to dependency parsing Bridges the gap between small human-annotated training data and huge raw data for dependency parsing Explains why semi-supervised approaches are well suited to dependency parsing Clarifies the differences between the three levels of information for semi-supervised dependency parsing