Seminaire de Probabilites XXXI: Lecture Notes in Mathematics, cartea 1655
Editat de Jacques Azema, Michel Emery, Marc Yoren Limba Engleză Paperback – 14 apr 1997
Din seria Lecture Notes in Mathematics
- Preț: 450.66 lei
- 17% Preț: 360.42 lei
- Preț: 118.94 lei
- Preț: 131.65 lei
- Preț: 175.68 lei
- Preț: 197.00 lei
- Preț: 279.76 lei
- Preț: 477.65 lei
- 17% Preț: 361.88 lei
- Preț: 252.37 lei
- Preț: 346.89 lei
- Preț: 138.88 lei
- Preț: 152.61 lei
- Preț: 116.67 lei
- Preț: 102.77 lei
- Preț: 119.02 lei
- 17% Preț: 365.52 lei
- Preț: 396.75 lei
- 17% Preț: 362.12 lei
- Preț: 396.11 lei
- Preț: 357.78 lei
- 17% Preț: 362.31 lei
- Preț: 403.80 lei
- 17% Preț: 361.70 lei
- Preț: 489.81 lei
- Preț: 447.84 lei
- Preț: 395.90 lei
- Preț: 177.41 lei
- Preț: 415.47 lei
- Preț: 477.76 lei
- Preț: 477.76 lei
- Preț: 323.91 lei
- Preț: 319.23 lei
- Preț: 343.28 lei
- Preț: 324.67 lei
- Preț: 400.17 lei
- Preț: 321.68 lei
- Preț: 412.81 lei
- Preț: 270.46 lei
- Preț: 416.06 lei
- Preț: 413.55 lei
- Preț: 494.82 lei
- Preț: 413.55 lei
- Preț: 269.34 lei
- Preț: 328.46 lei
- Preț: 413.78 lei
- Preț: 487.46 lei
- Preț: 267.26 lei
- Preț: 419.43 lei
- Preț: 368.67 lei
Preț: 449.65 lei
Nou
Puncte Express: 674
Preț estimativ în valută:
86.05€ • 89.39$ • 71.48£
86.05€ • 89.39$ • 71.48£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540626343
ISBN-10: 3540626344
Pagini: 344
Ilustrații: X, 334 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:1997
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Mathematics, Séminaire de Probabilités
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540626344
Pagini: 344
Ilustrații: X, 334 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.48 kg
Ediția:1997
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Mathematics, Séminaire de Probabilités
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Branching processes, the Ray-Knight theorem, and sticky Brownian motion.- Integration by parts and Cameron-Martin formulas for the free path space of a compact Riemannian manifold.- The change of variables formula on Wiener space.- Classification des Semi-Groupes de diffusion sur IR associés à une famille de polynômes orthogonaux.- A differentiable isomorphism between Wiener space and path group.- On martingales which are finite sums of independent random variables with time dependent coefficients.- Oscillation presque sûre de martingales continues.- A note on Cramer’s theorem.- The hypercontractivity of Ornstein-Uhlenbeck semigroups with drift, revisited.- Une preuve standard du principe d’invariance de stoll.- Marches aléatoires auto-évitantes et mesures de polymère.- On the tails of the supremum and the quadratic variation of strictly local martingales.- On Wald’s equation. Discrete time case.- Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de Markov finies.- Comportement des temps d’atteinte d’une diffusion fortement rentrante.- Closed sets supporting a continuous divergent martingale.- Some polar sets for the Brownian sheet.- A counter-example concerning a condition of Ogawa integrability.- The multiplicity of stochastic processes.- Theoremes limites pour les temps locaux d’un processus stable symetrique.- An Itô type isometry for loops in Rd via the Brownian bridge.- On continuous conditional Gaussian martingales and stable convergence in law.- Simple examples of non-generating Girsanov processes.- Formule d’Ito généralisée pour le mouvement brownien linéaire.- On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman’s theorem.- Some remarks on Pitman’s theorem.-On the lengths of excursions of some Markov processes.- On the relative lengths of excursions derived from a stable subordinator.- Some remarks about the joint law of Brownian motion and its supremum.- A characterization of Markov solutions for stochastic differential equations with jumps.- Diffeomorphisms of the circle and the based stochastic loop space.- Vitesse de convergence en loi pour des solutions d’équations différentielles stochastiques vers une diffusion.- Projection d’une diffusion réelle sur sa filtration lente.