Interpolation of Spatial Data: Some Theory for Kriging: Springer Series in Statistics
Autor Michael L. Steinen Limba Engleză Hardback – 22 iun 1999
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 888.97 lei 6-8 săpt. | |
Springer – 17 oct 2012 | 888.97 lei 6-8 săpt. | |
Hardback (1) | 892.74 lei 6-8 săpt. | |
Springer – 22 iun 1999 | 892.74 lei 6-8 săpt. |
Din seria Springer Series in Statistics
- 14% Preț: 679.60 lei
- 20% Preț: 630.97 lei
- 20% Preț: 816.43 lei
- 20% Preț: 1000.84 lei
- Preț: 390.84 lei
- 20% Preț: 697.13 lei
- 20% Preț: 445.20 lei
- 20% Preț: 881.51 lei
- 18% Preț: 1237.14 lei
- 18% Preț: 967.22 lei
- 18% Preț: 956.50 lei
- 18% Preț: 794.25 lei
- 15% Preț: 648.05 lei
- 18% Preț: 1222.49 lei
- 15% Preț: 646.11 lei
- 15% Preț: 647.08 lei
- 15% Preț: 646.11 lei
- 18% Preț: 1389.62 lei
- 15% Preț: 652.81 lei
- 18% Preț: 1114.52 lei
- 18% Preț: 952.40 lei
- 18% Preț: 1393.27 lei
- 18% Preț: 1561.68 lei
- 18% Preț: 1231.47 lei
- 15% Preț: 513.64 lei
- 18% Preț: 893.71 lei
- 15% Preț: 649.87 lei
- 18% Preț: 1007.65 lei
- 18% Preț: 1111.67 lei
- 18% Preț: 1229.10 lei
- 18% Preț: 913.26 lei
- 18% Preț: 943.88 lei
- Preț: 391.61 lei
- Preț: 391.22 lei
- 18% Preț: 1391.04 lei
- Preț: 390.84 lei
- 18% Preț: 893.84 lei
- 18% Preț: 960.61 lei
- 18% Preț: 1245.34 lei
- 18% Preț: 964.54 lei
- 15% Preț: 643.16 lei
- 18% Preț: 1674.70 lei
- 15% Preț: 643.84 lei
- 15% Preț: 586.37 lei
- 18% Preț: 1004.99 lei
- 15% Preț: 643.34 lei
- 18% Preț: 806.40 lei
- 18% Preț: 727.66 lei
Preț: 892.74 lei
Preț vechi: 1088.70 lei
-18% Nou
Puncte Express: 1339
Preț estimativ în valută:
170.84€ • 177.28$ • 142.80£
170.84€ • 177.28$ • 142.80£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387986296
ISBN-10: 0387986294
Pagini: 249
Ilustrații: XVII, 249 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.49 kg
Ediția:1999
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387986294
Pagini: 249
Ilustrații: XVII, 249 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.49 kg
Ediția:1999
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Linear Prediction.- 1.1 Introduction.- 1.2 Best linear prediction.- 1.3 Hilbert spaces and prediction.- 1.4 An example of a poor BLP.- 1.5 Best linear unbiased prediction.- 1.6 Some recurring themes.- 1.7 Summary of practical suggestions.- 2 Properties of Random Fields.- 2.1 Preliminaries.- 2.2 The turning bands method.- 2.3 Elementary properties of autocovariance functions.- 2.4 Mean square continuity and differentiability.- 2.5 Spectral methods.- 2.6 Two corresponding Hilbert spaces.- 2.7 Examples of spectral densities on 112.- 2.8 Abelian and Tauberian theorems.- 2.9 Random fields with nonintegrable spectral densities.- 2.10 Isotropic autocovariance functions.- 2.11 Tensor product autocovariances.- 3 Asymptotic Properties of Linear Predictors.- 3.1 Introduction.- 3.2 Finite sample results.- 3.3 The role of asymptotics.- 3.4 Behavior of prediction errors in the frequency domain.- 3.5 Prediction with the wrong spectral density.- 3.6 Theoretical comparison of extrapolation and ointerpolation.- 3.7 Measurement errors.- 3.8 Observations on an infinite lattice.- 4 Equivalence of Gaussian Measures and Prediction.- 4.1 Introduction.- 4.2 Equivalence and orthogonality of Gaussian measures.- 4.3 Applications of equivalence of Gaussian measures to linear prediction.- 4.4 Jeffreys’s law.- 5 Integration of Random Fields.- 5.1 Introduction.- 5.2 Asymptotic properties of simple average.- 5.3 Observations on an infinite lattice.- 5.4 Improving on the sample mean.- 5.5 Numerical results.- 6 Predicting With Estimated Parameters.- 6.1 Introduction.- 6.2 Microergodicity and equivalence and orthogonality of Gaussian measures.- 6.3 Is statistical inference for differentiable processes possible?.- 6.4 Likelihood Methods.- 6.5 Matérn model.- 6.6 A numerical study of the Fisherinformation matrix under the Matérn model.- 6.7 Maximum likelihood estimation for a periodic version of the Matérn model.- 6.8 Predicting with estimated parameters.- 6.9 An instructive example of plug-in prediction.- 6.10 Bayesian approach.- A Multivariate Normal Distributions.- B Symbols.- References.
Recenzii
From a review:
GEODERMA
"the book is written with great care and dedication. Soil geostatisticians that are not easily scared off by mathematics will find this book to be a rich source of inspiration for many years to come."