Cantitate/Preț
Produs

Exact Statistical Methods for Data Analysis: Springer Series in Statistics

Autor Samaradasa Weerahandi
en Limba Engleză Paperback – 17 oct 2003
Now available in paperback. This book covers some recent developments in statistical inference. The author's main aim is to develop a theory of generalized p-values and generalized confidence intervals and to show how these concepts may be used to make exact statistical inferences in a variety of practical applications. In particular, they provide methods applicable in problems involving nuisance parameters such as those encountered in comparing two exponential distributions or in ANOVA without the assumption of equal error variances. The generalized procedures are shown to be more powerful in detecting significant experimental results and in avoiding misleading conclusions.
Citește tot Restrânge

Din seria Springer Series in Statistics

Preț: 38337 lei

Nou

Puncte Express: 575

Preț estimativ în valută:
7337 7621$ 6094£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387406213
ISBN-10: 0387406212
Pagini: 329
Ilustrații: XIV, 329 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Preliminary Notions.- 1.1 Introduction.- 1.2 Sufficiency.- 1.3 Complete Sufficient Statistics.- 1.4 Exponential Families of Distributions.- 1.5 Invariance.- 1.6 Maximum Likelihood Estimation.- 1.7 Unbiased Estimation.- 1.8 Least Squares Estimation.- 1.9 Interval Estimation.- Exercises.- 2 Notions in significance testing of hypotheses.- 2.1 Introduction.- 2.2 Test Statistics and Test Variables.- 2.3 Definition of p-Value.- 2.4 Generalized Likelihood Ratio Method.- 2.5 Invariance in Significance Testing.- 2.6 Unbiasedness and Similarity.- 2.7 Interval Estimation and Fixed-Level Testing.- Exercises.- 3 Review of Special Distributions.- 3.1 Poisson and Binomial Distributions.- 3.2 Point Estimation and Interval Estimation.- 3.3 Significance Testing of Parameters.- 3.4 Bayesian Inference.- 3.5 The Normal Distribution.- 3.6 Inferences About the Mean.- 3.7 Inferences About the Variance.- 3.8 Quantiles of a Normal Distribution.- 3.9 Conjugate Prior and Posterior Distributions.- 3.10 Bayesian Inference About the Mean and the Variance.- Exercises.- 4 Exact Nonparametric Methods.- 4.1 Introduction.- 4.2 The Sign Test.- 4.3 The Signed Rank Test and the Permutation Test.- 4.4 The Rank Sum Test and Allied Tests.- 4.5 Comparing k Populations.- 4.6 Contingency Tables.- 4.7 Testing the Independence of Criteria of Classification.- 4.8 Testing the Homogeneity of Populations.- Exercises.- 5 Generalized p-Values.- 5.1 Introduction.- 5.2 Generalized Test Variables.- 5.3 Definition of Generalized p-Values.- 5.4 Frequency Interpretations and Generalized Fixed-Level Tests.- 5.5 Invariance.- 5.6 Comparing the Means of Two Exponential Distributions.- 5.7 Unbiasedness and Similarity.- 5.7 Comparing the Means of an Exponential Distribution and a Normal Distribution.- Exercises.- 6 Generalized Confidence Intervals.- 6.1 Introduction.- 6.2 Generalized Definitions.- 6.3 Frequency Interpretations and Repeated Sampling Properties.- 6.4 Invariance in Interval Estimation.- 6.5 Interval Estimation of the Difference Between Two Exponential Means.- 6.6 Similarity in Interval Estimation.- 6.7 Generalized Confidence Intervals Based on p-Values.- 6.8 Resolving an Undesirable Feature of Confidence Intervals.- 6.9 Bayesian and Conditional Confidence Intervals.- Exercises.- 7 Comparing Two Normal Populations.- 7.1 Introduction.- 7.2 Comparing the Means when the Variances are Equal.- 7.3 Solving the Behrens-Fisher Problem.- 7.4 Inferences About the Ratio of Two Variances.- 7.5 Inferences About the Difference in Two Variances.- 7.6 Bayesian Inference.- 7.7 Inferences About the Reliability Parameter.- 7.8 The Case of Known Stress Distribution.- Exercises.- 8 Analysis of Variance.- 8.1 Introduction.- 8.2 One-way Layout.- 8.3 Testing the Equality of Means.- 8.4 ANOVA with Unequal Error Variances.- 8.5 Multiple Comparisons.- 8.6 Testing the Equality of Variances.- 8.7 Two-way ANOVA without Replications.- 8.8 ANOVA in a Balanced Two-way Layout with Replications.- 8.9 Two-way ANOVA under Heteroscedasticity.- Exercises.- 9 Mixed Models.- 9.1 Introduction.- 9.2 One-way Layout.- 9.3 Testing Variance Components.- 9.4 Confidence Intervals.- 9.5 Two-way Layout.- 9.6 Comparing Variance Components.- Exercises.- 10 Regression.- 10.1 Introduction.- 10.2 Simple Linear Regression Model.- 10.3. Inferences about Parameters of the Simple Regression Model.- 10.3 Multiple Linear Regression.- 10.4 Distributions of Estimators and Significance Tests.- 10.5 Comparing Two Regressions with Equal Variances.- 10.6 Comparing Regressions without Common Parameters.- 10.7 Comparison of Two General Models.- Exercises.- Appendix A.- Elements of Bayesian Inference.- A.1 Introduction.- A.2 The Prior Distribution.- A.3 The Posterior Distribution.- A.4 Bayes Estimators.- A.5 Bayesian Interval Estimation.- A.6 Bayesian Hypothesis Testing.- Appendix B Technical Arguments.- References.