Asymptotic Theory of Statistical Inference for Time Series: Springer Series in Statistics
Autor Masanobu Taniguchi, Yoshihide Kakizawaen Limba Engleză Hardback – 11 aug 2000
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 935.16 lei 43-57 zile | |
Springer – 23 oct 2012 | 935.16 lei 43-57 zile | |
Hardback (1) | 939.46 lei 43-57 zile | |
Springer – 11 aug 2000 | 939.46 lei 43-57 zile |
Din seria Springer Series in Statistics
- 18% Preț: 696.52 lei
- 20% Preț: 630.95 lei
- 20% Preț: 816.42 lei
- 20% Preț: 1000.82 lei
- Preț: 379.72 lei
- 20% Preț: 697.11 lei
- 20% Preț: 445.19 lei
- 20% Preț: 881.49 lei
- 18% Preț: 1201.60 lei
- 18% Preț: 929.05 lei
- 18% Preț: 771.49 lei
- 15% Preț: 629.50 lei
- 18% Preț: 1187.38 lei
- 15% Preț: 627.62 lei
- 15% Preț: 628.55 lei
- 15% Preț: 627.62 lei
- 18% Preț: 1349.67 lei
- 15% Preț: 634.13 lei
- 18% Preț: 1082.51 lei
- 18% Preț: 925.07 lei
- 18% Preț: 1353.23 lei
- 18% Preț: 1516.78 lei
- 18% Preț: 1196.10 lei
- 15% Preț: 498.96 lei
- 18% Preț: 868.06 lei
- 15% Preț: 631.25 lei
- 18% Preț: 978.74 lei
- 18% Preț: 1079.74 lei
- 18% Preț: 1193.80 lei
- 18% Preț: 867.11 lei
- 18% Preț: 887.05 lei
- 18% Preț: 916.79 lei
- Preț: 380.47 lei
- Preț: 380.09 lei
- 18% Preț: 1351.06 lei
- Preț: 379.72 lei
- 18% Preț: 868.19 lei
- 18% Preț: 933.04 lei
- 18% Preț: 1209.57 lei
- 18% Preț: 936.85 lei
- 15% Preț: 624.74 lei
- 18% Preț: 1626.54 lei
- 15% Preț: 625.40 lei
- 15% Preț: 569.59 lei
- 18% Preț: 976.13 lei
- 15% Preț: 624.92 lei
- 18% Preț: 783.28 lei
- 18% Preț: 706.81 lei
Preț: 939.46 lei
Preț vechi: 1145.68 lei
-18% Nou
Puncte Express: 1409
Preț estimativ în valută:
179.81€ • 187.41$ • 149.68£
179.81€ • 187.41$ • 149.68£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387950396
ISBN-10: 0387950397
Pagini: 662
Ilustrații: XVII, 662 p.
Dimensiuni: 155 x 235 x 36 mm
Greutate: 1.07 kg
Ediția:2000
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387950397
Pagini: 662
Ilustrații: XVII, 662 p.
Dimensiuni: 155 x 235 x 36 mm
Greutate: 1.07 kg
Ediția:2000
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Elements of Stochastic Processes.- 1.1 Introduction.- 1.2 Stochastic Processes.- 1.3 Limit Theorems.- Problems.- 2 Local Asymptotic Normality for Stochastic Processes.- 2.1 General Results for Local Asymptotic Normality.- 2.2 Local Asymptotic Normality for Linear Processes.- Problems.- 3 Asymptotic Theory of Estimation and Testing for Stochastic Processes.- 3.1 Asymptotic Theory of Estimation and Testing for Linear Processes.- 3.2 Asymptotic Theory for Nonlinear Stochastic Models.- 3.3 Asymptotic Theory for Continuous Time Processes.- Problems.- 4 Higher Order Asymptotic Theory for Stochastic Processes.- 4.1 Introduction to Higher Order Asymptotic Theory.- 4.2 Valid Asymptotic Expansions.- 4.3 Higher Order Asymptotic Estimation Theory for Discrete Time Processes in View of Statistical Differential Geometry.- 4.4 Higher Order Asymptotic Theory for Continuous Time Processes.- 4.5 Higher Order Asymptotic Theory for Testing Problems.- 4.6 Higher Order Asymptotic Theory for Normalizing Transformations.- 4.7 Generalization of LeCam’s Third Lemma and Higher Order Asymptotics of Iterative Methods.- Problems.- 5 Asymptotic Theory for Long-Memory Processes.- 5.1 Some Elements of Long-Memory Processes.- 5.2 Limit Theorems for Fundamental Statistics.- 5.3 Estimation and Testing Theory for Long-Memory Processes.- 5.4 Regression Models with Long-Memory Disturbances.- 5.5 Semiparametric Analysis and the LAN Approach.- Problems.- 6 Statistical Analysis Based on Functionals of Spectra.- 6.1 Estimation of Nonlinear Functionals of Spectra.- 6.2 Application to Parameter Estimation for Stationary Processes.- 6.3 Asymptotically Efficient Nonparametric Estimation of Functionals of Spectra in Gaussian Stationary Processes.- 6.4 Robustness in the Frequency Domain Approach.- 6.5 NumericalExamples.- Problems.- 7 Discriminant Analysis for Stationary Time Series.- 7.1 Basic Formulation.- 7.2 Standard Methods for Gaussian Stationary Processes.- 7.3 Discriminant Analysis for Non-Gaussian Linear Processes.- 7.4 Nonparametric Approach for Discriminant Analysis.- 7.5 Parametric Approach for Discriminant Analysis.- 7.6 Derivation of Spectral Expressions to Divergence Measures Between Gaussian Stationary Processes.- 7.7 Miscellany.- Problems.- 8 Large Deviation Theory and Saddlepoint Approximation for Stochastic Processes.- 8.1 Large Deviation Theorem 538 8.2 Asymptotic Efficiency for Gaussian Stationary Processes:Large Deviation Approach.- 8.3 Large Deviation Results for an Ornstein-Uhlenbeck Process.- 8.4 Saddlepoint Approximations for Stochastic Processes.- Problems.- A.1 Mathematics.- A.2 Probability.- A.3 Statistics.
Recenzii
From the reviews:
MATHEMATICAL REVIEWS
"It is valuable both as an advanced graduate level text and as a reference for researchers?he book can be most strongly recommended."
MATHEMATICAL REVIEWS
"It is valuable both as an advanced graduate level text and as a reference for researchers?he book can be most strongly recommended."