Sentic Computing: Techniques, Tools, and Applications: SpringerBriefs in Cognitive Computation, cartea 2
Autor Erik Cambria, Amir Hussainen Limba Engleză Paperback – 28 iul 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 361.96 lei 43-57 zile | |
SPRINGER NETHERLANDS – 28 iul 2012 | 361.96 lei 43-57 zile | |
Springer International Publishing – 21 mar 2019 | 550.76 lei 38-44 zile | |
Hardback (1) | 644.49 lei 22-36 zile | |
Springer International Publishing – 18 dec 2015 | 644.49 lei 22-36 zile |
Preț: 361.96 lei
Preț vechi: 381.00 lei
-5% Nou
Puncte Express: 543
Preț estimativ în valută:
69.27€ • 72.13$ • 58.54£
69.27€ • 72.13$ • 58.54£
Carte tipărită la comandă
Livrare economică 10-24 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789400750692
ISBN-10: 9400750692
Pagini: 150
Ilustrații: XVIII, 153 p. 39 illus., 35 illus. in color.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.25 kg
Ediția:2012
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria SpringerBriefs in Cognitive Computation
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9400750692
Pagini: 150
Ilustrații: XVIII, 153 p. 39 illus., 35 illus. in color.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.25 kg
Ediția:2012
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria SpringerBriefs in Cognitive Computation
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Introduction. - 2. Background. - 3. Techniques. - 4. Tools. - 5. Applications. - 6. Concluding Remarks.
Textul de pe ultima copertă
In this book common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques is exploited on two common sense knowledge bases to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data.
Caracteristici
Represents the first comprehensive review of Sentic Computing, state-of-the-art approach to opinion mining and sentiment analysis (see http://en.wikipedia.org/wiki/Sentiment_analysis) A special chapter on cognitive and affective modeling for natural language understanding Includes tips on different strategies (techniques, online resources, datasets, etc.) to opinion mining and sentiment analysis Includes supplementary material: sn.pub/extras Includes supplementary material: sn.pub/extras