Cantitate/Preț
Produs

Set Theory: Techniques and Applications Curaçao 1995 and Barcelona 1996 Conferences

Editat de Carlos A. di Prisco, Jean A. Larson, Joan Bagaria, A.R.D. Mathias
en Limba Engleză Hardback – 31 dec 1997
During the past 25 years, set theory has developed in several interesting directions. The most outstanding results cover the application of sophisticated techniques to problems in analysis, topology, infinitary combinatorics and other areas of mathematics. This book contains a selection of contributions, some of which are expository in nature, embracing various aspects of the latest developments. Amongst topics treated are forcing axioms and their applications, combinatorial principles used to construct models, and a variety of other set theoretical tools including inner models, partitions and trees.
Audience: This book will be of interest to graduate students and researchers in foundational problems of mathematics.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62686 lei  6-8 săpt.
  SPRINGER NETHERLANDS – dec 2010 62686 lei  6-8 săpt.
Hardback (1) 63300 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 31 dec 1997 63300 lei  6-8 săpt.

Preț: 63300 lei

Preț vechi: 74471 lei
-15% Nou

Puncte Express: 950

Preț estimativ în valută:
12118 12463$ 10053£

Carte tipărită la comandă

Livrare economică 15 februarie-01 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792349051
ISBN-10: 0792349059
Pagini: 226
Ilustrații: X, 226 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.51 kg
Ediția:1998
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

Forcing axioms.- Large cardinal properties of small cardinals.- Countable length Ramsey games.- Weak forms of the axiom of choice and partitions of infinite sets.- A taste of proper forcing.- Applications of ?-functions.- Models as side conditions.- An ordinal partition from a scale.- A picaresque approach to set theory genealogy.- Recurrent points and hyperarithmetic sets.- A tree-arrowing graph.- A Hollow Shell: Covering Lemmas Without a Core.- Partition properties for reals.- Combinatorial set theory and inner models.- Definable ideals and gaps in their quotients.