Similarity Search and Applications: 16th International Conference, SISAP 2023, A Coruña, Spain, October 9–11, 2023, Proceedings: Lecture Notes in Computer Science, cartea 14289
Editat de Oscar Pedreira, Vladimir Estivill-Castroen Limba Engleză Paperback – 27 oct 2023
This book constitutes the refereed proceedings of the 16th International Conference on Similarity Search and Applications, SISAP 2023, held in A Coruña, Spain, during October 9–11, 2023.
The 16 full papers and 4 short papers included in this book were carefully reviewed and selected from 33 submissions. They were organized in topical sections as follows: similarity queries, similarity measures, indexing and retrieval, data management, feature extraction, intrinsic dimensionality, efficient algorithms, similarity in machine learning and data mining.
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 391.13 lei
Preț vechi: 488.90 lei
-20% Nou
Puncte Express: 587
Preț estimativ în valută:
74.87€ • 78.65$ • 62.92£
74.87€ • 78.65$ • 62.92£
Carte tipărită la comandă
Livrare economică 11-25 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031469930
ISBN-10: 3031469933
Pagini: 310
Ilustrații: XXI, 310 p. 103 illus., 92 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.47 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031469933
Pagini: 310
Ilustrații: XXI, 310 p. 103 illus., 92 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.47 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Keynotes.- From Intrinsic Dimensionality to Chaos and Control: Towards a Unified Theoretical View.- The Rise of HNSW: Understanding Key Factors Driving the Adoption.- Towards a Universal Similarity Function: the Information Contrast Model and its Application as Evaluation Metric in Artificial Intelligence Tasks.- Research Track.- Finding HSP Neighbors via an Exact, Hierarchical Approach.- Approximate Similarity Search for Time Series Data Enhanced by Section Min-Hash.- Mutual nearest neighbor graph for data analysis: Application to metric space clustering.- An Alternating Optimization Scheme for Binary Sketches for Cosine Similarity Search.- Unbiased Similarity Estimators using Samples.- Retrieve-and-Rank End-to-End Summarization of Biomedical Studies.- Fine-grained Categorization of Mobile Applications through Semantic Similarity Techniques for Apps Classification.- Runs of Side-SharingTandems in Rectangular Arrays.- Turbo Scan: Fast Sequential Nearest Neighbor Search in High Dimensions.- Class Representatives Selection in Non-Metric Spaces for Nearest Prototype Classification.- The Dataset-similarity-based Approach to Select Datasets for Evaluation in Similarity Retrieval.- Suitability of Nearest Neighbour Indexes for Multimedia Relevance Feedback.- Accelerating k-Means Clustering with Cover Trees.- Is Quantized ANN Search Cursed? Case Study of Quantifying Search and Index Quality.- Minwise-Independent Permutations with Insertion and Deletion of Features.- SDOclust: Clustering with Sparse Data Observers.- Solving k-Closest Pairs in High-Dimensional Data using Locality- Sensitive Hashing.- Vec2Doc: Transforming Dense Vectors into Sparse Representations for Efficient Information Retrieval.- Similarity Search with Multiple-Object Queries.- Diversity Similarity Join for Big Data.- Indexing Challenge.- Overview of the SISAP 2023 Indexing Challenge.- Enhancing Approximate Nearest Neighbor Search: Binary-Indexed LSH-Tries, Trie Rebuilding, And Batch Extraction.- General and Practical Tuning Method for Off-the-Shelf Graph-Based Index: SISAP Indexing Challenge Report by Team UTokyo.- SISAP 2023 Indexing Challenge – Learned Metric Index.- Computational Enhancements of HNSW Targeted to Very Large Datasets.- CRANBERRY: Memory-Effective Search in 100M High-Dimensional CLIP Vectors.