Cantitate/Preț
Produs

Simulation and Synthesis in Medical Imaging: Third International Workshop, SASHIMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings: Lecture Notes in Computer Science, cartea 11037

Editat de Ali Gooya, Orcun Goksel, Ipek Oguz, Ninon Burgos
en Limba Engleză Paperback – 12 sep 2018
This book constitutes the refereed proceedings of the Third International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018.
The 14 full papers presented were carefully reviewed and selected from numerous submissions. This workshop continues to provide a state-of-the-art and integrative perspective on simulation and synthesis in medical imaging for the purpose of invigorating research and stimulating new ideas on how to build theoretical links, practical synergies, and best practices between these two research directions.
Citește tot Restrânge

Din seria Lecture Notes in Computer Science

Preț: 32291 lei

Preț vechi: 40363 lei
-20% Nou

Puncte Express: 484

Preț estimativ în valută:
6184 6372$ 5181£

Carte tipărită la comandă

Livrare economică 24 februarie-10 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030005351
ISBN-10: 3030005356
Pagini: 135
Ilustrații: X, 140 p. 58 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.22 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics

Locul publicării:Cham, Switzerland

Cuprins

Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks.- Data Augmentation Using synthetic Lesions Improves Machine Learning Detection of Microbleeds from MRI.- Deep Harmonization of Inconsistent MR Data for Consistent Volume Segmentation.- Cross-modality Image Synthesis from Unpaired Data Using CycleGAN: Effects of Gradient Consistency Loss and Training Data Size.- A Machine Learning Approach to Diffusion MRI Partial Volume Estimation.- Unsupervised Learning for Cross-domain Medical Image Synthesis Using Deformation Invariant Cycle Consistency Networks.- Deep Boosted Regression for MR TO CT Synthesis.- Model-Based Generation of Synthetic 3D Time-Lapse Sequences of Multiple Mutually Interacting Motile Cells with Filopodia.- MRI to FDG-PET: Cross-Modal Synthesis Using 3D U-Net for Multi-Modal Alzheimer’s Classification.- Tubular Network Formation Process Using 3D Cellular Potts Model.- Deep Learning Based Coronary Artery Motion Artifact Compensation Using Style-Transfer Synthesis in CT Images.- Lung Nodule Synthesis Using CNN-based Latent Data Representation.- RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours.- Generating Magnetic Resonance Spectroscopy Imaging Data of Brain Tumours from Linear, Non-Linear and Deep Learning Models.