Simulation and Synthesis in Medical Imaging: Third International Workshop, SASHIMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings: Lecture Notes in Computer Science, cartea 11037
Editat de Ali Gooya, Orcun Goksel, Ipek Oguz, Ninon Burgosen Limba Engleză Paperback – 12 sep 2018
The 14 full papers presented were carefully reviewed and selected from numerous submissions. This workshop continues to provide a state-of-the-art and integrative perspective on simulation and synthesis in medical imaging for the purpose of invigorating research and stimulating new ideas on how to build theoretical links, practical synergies, and best practices between these two research directions.
Din seria Lecture Notes in Computer Science
- 20% Preț: 1053.72 lei
- 20% Preț: 337.82 lei
- 20% Preț: 339.43 lei
- 20% Preț: 449.99 lei
- 20% Preț: 238.01 lei
- 20% Preț: 337.82 lei
- 20% Preț: 438.69 lei
- Preț: 446.28 lei
- 20% Preț: 341.10 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 640.52 lei
- 17% Preț: 427.22 lei
- 20% Preț: 650.20 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1067.33 lei
- 20% Preț: 587.17 lei
- Preț: 378.43 lei
- 20% Preț: 334.54 lei
- 15% Preț: 435.36 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1404.34 lei
- 20% Preț: 1016.88 lei
- 20% Preț: 575.04 lei
- 20% Preț: 575.48 lei
- 20% Preț: 579.12 lei
- 20% Preț: 757.61 lei
- 15% Preț: 576.20 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 350.92 lei
- 20% Preț: 581.57 lei
- Preț: 407.85 lei
- 20% Preț: 592.06 lei
- 20% Preț: 757.61 lei
- 20% Preț: 819.86 lei
- 20% Preț: 649.49 lei
- 20% Preț: 347.62 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 322.91 lei
Preț vechi: 403.63 lei
-20% Nou
Puncte Express: 484
Preț estimativ în valută:
61.84€ • 63.72$ • 51.81£
61.84€ • 63.72$ • 51.81£
Carte tipărită la comandă
Livrare economică 24 februarie-10 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030005351
ISBN-10: 3030005356
Pagini: 135
Ilustrații: X, 140 p. 58 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.22 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
ISBN-10: 3030005356
Pagini: 135
Ilustrații: X, 140 p. 58 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.22 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
Cuprins
Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks.- Data Augmentation Using synthetic Lesions Improves Machine Learning Detection of Microbleeds from MRI.- Deep Harmonization of Inconsistent MR Data for Consistent Volume Segmentation.- Cross-modality Image Synthesis from Unpaired Data Using CycleGAN: Effects of Gradient Consistency Loss and Training Data Size.- A Machine Learning Approach to Diffusion MRI Partial Volume Estimation.- Unsupervised Learning for Cross-domain Medical Image Synthesis Using Deformation Invariant Cycle Consistency Networks.- Deep Boosted Regression for MR TO CT Synthesis.- Model-Based Generation of Synthetic 3D Time-Lapse Sequences of Multiple Mutually Interacting Motile Cells with Filopodia.- MRI to FDG-PET: Cross-Modal Synthesis Using 3D U-Net for Multi-Modal Alzheimer’s Classification.- Tubular Network Formation Process Using 3D Cellular Potts Model.- Deep Learning Based Coronary Artery Motion Artifact Compensation Using Style-Transfer Synthesis in CT Images.- Lung Nodule Synthesis Using CNN-based Latent Data Representation.- RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours.- Generating Magnetic Resonance Spectroscopy Imaging Data of Brain Tumours from Linear, Non-Linear and Deep Learning Models.