Cantitate/Preț
Produs

Singular Integral Operators

Autor Solomon G. Mikhlin Traducere de A. Böttcher Autor Siegfried Prößdorf Traducere de R. Lehmann
en Limba Engleză Hardback – 1987
The present edition differs from the original German one mainly in the following addi­ tional material: weighted norm inequalities for maximal functions and singular opera­ tors (§ 12, Chap. XI), polysingular integral operators and pseudo-differential operators (§§ 7, 8, Chap. XII), and spline approximation methods for solving singular integral equations (§ 4, Chap. XVII). Furthermore, we added two subsections on polynomial approximation methods for singular integral equations over an interval or with dis­ continuous coefficients (Nos. 3.6 and 3.7, Chap. XVII). In many places we incorporated new results which, in the vast majority, are from the last five years after publishing the German edition (note that the references are enlarged by about 150 new titles). S. G. Mikhlin wrote §§ 7, 8, Chap. XII, and the other additions were drawn up by S. Prossdorf. We wish to express our deepest gratitude to Dr. A. Bottcher and Dr. R. Lehmann who together translated the text into English carefully and with remarkable expertise.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64086 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 20 noi 2013 64086 lei  6-8 săpt.
Hardback (1) 64728 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 1987 64728 lei  6-8 săpt.

Preț: 64728 lei

Preț vechi: 76151 lei
-15% Nou

Puncte Express: 971

Preț estimativ în valută:
12391 12744$ 10280£

Carte tipărită la comandă

Livrare economică 15 februarie-01 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540159674
ISBN-10: 3540159673
Pagini: 528
Ilustrații: IV, 528 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.92 kg
Ediția:1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I. Basic facts from functional analysis.- II. The one-dimensional singular integral.- III. One-dimensional singular integral equations with continuous coefficients on closed curves.- IV. One-dimensional singular integral equations with discontinuous coefficients.- V. Systems of one-dimensional singular equations.- VI. One-dimensional singular equations with degenerate symbol.- VII. Some problems leading to singular integral equations.- VIII. Some further subsidiaries.- IX. Singular integrals of higher dimensions in spaces with a uniform metric.- X. The symbol of higher dimensional singular integral operators.- XI. Singular integral operators in spaces with integral metric.- XII. Multidimensional singular integral equations.- XIII. Singular equations on smooth manifolds without boundary.- XIV. Systems of multidimensional singular equations.- XV. The localization principle. Singular operators on manifolds with boundary.- XVI. Multidimensional singular equations with degenerate symbol.- XVII. Methods for the approximate solution of one-dimensional singular integral equations.- XVIII. Approximate solution ot multidimensional singular integral equations.- References.- Symbols and notations.- Name index.