Smart and Sustainable Power Systems: Operations, Planning, and Economics of Insular Electricity Grids
Editat de João P. S. Catalãoen Limba Engleză Hardback – 18 iun 2015
However, the increasing share of renewables in the power generation mix of insular power systems presents a significant challenge to efficient management of the insular distribution networks, mainly due to the variability and uncertainty of renewable generation. More than other electricity grids, insular electricity grids require the incorporation of sustainable resources and the maximization of the integration of local resources, as well as specific solutions to cope with the inherent characteristics of renewable generation. Insular power systems need a new generation of methodologies and tools to face the new paradigm of large-scale renewable integration.
Smart and Sustainable Power Systems: Operations, Planning, and Economics of Insular Electricity Grids discusses the modeling, simulation, and optimization of insular power systems to address the effects of large-scale integration of renewables and demand-side management. This practical book:
- Describes insular power systems, renewable energies, uncertainty, variability, reserves, and demand response
- Examines state-of-the-art forecasting techniques, power flow calculations, and scheduling models
- Covers probabilistic and stochastic approaches, scenario generation, and short-term operation
- Includes comprehensive testing and validation of the mathematical models using real-world data
- Explores electric price signals, competitive operation of distribution networks, and network expansion planning
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 338.33 lei 6-8 săpt. | |
CRC Press – 18 dec 2020 | 338.33 lei 6-8 săpt. | |
Hardback (1) | 1120.23 lei 6-8 săpt. | |
CRC Press – 18 iun 2015 | 1120.23 lei 6-8 săpt. |
Preț: 1120.23 lei
Preț vechi: 1366.14 lei
-18% Nou
Puncte Express: 1680
Preț estimativ în valută:
214.41€ • 220.96$ • 181.02£
214.41€ • 220.96$ • 181.02£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781498712125
ISBN-10: 1498712126
Pagini: 452
Ilustrații: 212 black & white illustrations, 46 black & white tables
Dimensiuni: 156 x 234 x 28 mm
Greutate: 0.77 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Locul publicării:Boca Raton, United States
ISBN-10: 1498712126
Pagini: 452
Ilustrații: 212 black & white illustrations, 46 black & white tables
Dimensiuni: 156 x 234 x 28 mm
Greutate: 0.77 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Locul publicării:Boca Raton, United States
Cuprins
Overview of Insular Power Systems: Challenges and Opportunities. Forecasting Models and Tools for Load and Renewables Generation. Probabilistic Harmonic Power Flow Calculations with Uncertain and Correlated Data. Scheduling Models and Methods for Efficient and Reliable Operations. Reserves and Demand Response Coping with Renewables Uncertainty. Electric Price Signals, Economic Operation, and Risk Analysis. Renewable Generation and Distribution Grid Expansion Planning.
Notă biografică
João P. S. Catalão received a master’s degree from the Instituto Superior Técnico, Lisbon, Portugal, and a Ph.D and habilitation for full professor "Agregação" from the University of Beira Interior (UBI), Covilhã, Portugal. Currently, he is a professor at UBI, director of the UBI Sustainable Energy Systems Lab, and researcher at the Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento (INESC-ID), Lisbon, Portugal. He is also the primary coordinator of the EU-funded FP7 project Smart and Sustainable Insular Electricity Grids Under Large-Scale Renewable Integration (SiNGULAR), a €5.2-million project involving 11 industry partners. An IEEE senior member, Professor Catalão has authored or coauthored more than 320 publications, including 100 journal papers, 200 conference proceedings papers, and 20 book chapters, with an h-index of 22 (according to Google Scholar); edited the book Electric Power Systems: Advanced Forecasting Techniques and Optimal Generation Scheduling (CRC Press, 2012); served in various editorial capacities for IEEE Transactions on Smart Grid, IEEE Transactions on Sustainable Energy, and IET Renewable Power Generation; and received the 2011 Scientific Merit Award UBI-FE/Santander Universities and the 2012 Scientific Award UTL/Santander Totta.
Recenzii
"This book draws from state-of-the-art results of the European Union co-operative research project "SINGULAR". It provides comprehensive knowledge centered on the critical challenges of smart grids in insular power systems."
—Professor Kai Strunz, Chair of Sustainable Electric Networks and Sources of Energy, Technical University of Berlin, Germany
"The book is addressing a timely subject, namely the study of insular (islanded) power grids with a predominant energy production from highly volatile energy conversion systems. The methodologies available in the literature for this specific field are well established and, therefore, mature enough for a book publication."
—Mario Paolone, Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland
"This book is a comprehensive overview of the challenges that achieving economic efficient and sustainable insular power systems pose. Low inertia small insular systems are an ideal test bed to demonstrate the challenges and solutions to ensure system reliability and security in systems with high penetration of intermittent renewable energy. The book proposes methods and tools for the integration of renewable generation taking advantage of new resources as storage and demand-side management in combination with smart grids. In this context, modelling, simulation and optimization techniques are presented for forecasting, scheduling, and dispatch of generation and demand, allocation of reserves, computation of prices, and network planning."
—Tomás Gómez San Román, Professor of Electrical Engineering, Institute for Research in Technology (IIT), Comillas University, Madrid (Spain)
"The strength of this book is its integrity, namely the fact that gathers a comprehensive knowledge that is currently spread in a large number of research articles. So, it can be very useful for a beginner or even an advanced researched on this specific field."
—Katsaprakakis Dimitris, Wind Energy and Power Plan
—Professor Kai Strunz, Chair of Sustainable Electric Networks and Sources of Energy, Technical University of Berlin, Germany
"The book is addressing a timely subject, namely the study of insular (islanded) power grids with a predominant energy production from highly volatile energy conversion systems. The methodologies available in the literature for this specific field are well established and, therefore, mature enough for a book publication."
—Mario Paolone, Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland
"This book is a comprehensive overview of the challenges that achieving economic efficient and sustainable insular power systems pose. Low inertia small insular systems are an ideal test bed to demonstrate the challenges and solutions to ensure system reliability and security in systems with high penetration of intermittent renewable energy. The book proposes methods and tools for the integration of renewable generation taking advantage of new resources as storage and demand-side management in combination with smart grids. In this context, modelling, simulation and optimization techniques are presented for forecasting, scheduling, and dispatch of generation and demand, allocation of reserves, computation of prices, and network planning."
—Tomás Gómez San Román, Professor of Electrical Engineering, Institute for Research in Technology (IIT), Comillas University, Madrid (Spain)
"The strength of this book is its integrity, namely the fact that gathers a comprehensive knowledge that is currently spread in a large number of research articles. So, it can be very useful for a beginner or even an advanced researched on this specific field."
—Katsaprakakis Dimitris, Wind Energy and Power Plan
Descriere
This book discusses the modeling, simulation, and optimization of insular power systems to address the large-scale integration of renewables and demand-side management. It describes uncertainty, variability, reserves, and demand response. It examines forecasting techniques, power flow calculations, and scheduling models, including testing and validation using real-world data. The text also covers probabilistic and stochastic approaches, scenario generation, short-term operation, electric price signals, competitive operation of distribution networks, and network expansion planning, making it a valuable resource for the development of a sustainable and smart grid.