Cantitate/Preț
Produs

Smart Grid – Communication–Enabled Intelligence for the Electric Power Grid: IEEE Press

Autor SF Bush
en Limba Engleză Hardback – 11 mar 2014
This book bridges the divide between the fields of power systems engineering and computer communication through the new field of power system information theory. Written by an expert with vast experience in the field, this book explores the smart grid from generation to consumption, both as it is planned today and how it will evolve tomorrow. The book focuses upon what differentiates the smart grid from the "traditional" power grid as it has been known for the last century. Furthermore, the author provides the reader with a fundamental understanding of both power systems and communication networking. It shows the complexity and operational requirements of the evolving power grid, the so-called "smart grid," to the communication networking engineer; and similarly, it shows the complexity and operational requirements for communications to the power systems engineer. The book is divided into three parts. Part One discusses the basic operation of the electric power grid, covering fundamental knowledge that is assumed in Parts Two and Three. Part Two introduces communications and networking, which are critical enablers for the smart grid. It also considers how communication and networking will evolve as technology develops. This lays the foundation for Part Three, which utilizes communication within the power grid. Part Three draws heavily upon both the embedded intelligence within the power grid and current research, anticipating how and where computational intelligence will be implemented within the smart grid. Each part is divided into chapters and each chapter has a set of questions useful for exercising the readers' understanding of the material in that chapter. Key Features: * Bridges the gap between power systems and communications experts * Addresses the smart grid from generation to consumption, both as it is planned today and how it will likely evolve tomorrow * Explores the smart grid from the perspective of traditional power systems as well as from communications * Discusses power systems, communications, and machine learning that all define the smart grid * It introduces the new field of power system information theory
Citește tot Restrânge

Din seria IEEE Press

Preț: 62883 lei

Preț vechi: 68352 lei
-8% Nou

Puncte Express: 943

Preț estimativ în valută:
12036 12621$ 9945£

Carte tipărită la comandă

Livrare economică 29 ianuarie-12 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781119975809
ISBN-10: 1119975808
Pagini: 570
Dimensiuni: 170 x 244 x 34 mm
Greutate: 1.02 kg
Editura: Wiley
Seria IEEE Press

Locul publicării:Chichester, United Kingdom

Public țintă

Primary: Power systems engineers, electrical engineers, computer scientists, and network engineers including professionals, graduate students, and upper undergraduate students.

Secondary: Undergraduate students, IT professionals.

Notă biografică

Dr Stephen F. Bush, General Electric Global Research, USA Stephen received the B.S. degree in electrical and computer engineering from Carnegie Mellon University, Pittsburgh, PA, the M.S. degree in computer science from Cleveland State University, Cleveland, OH, and the Ph.D. degree from the University of Kansas, Lawrence. He is currently a Researcher at General Electric Global Research, Niskayuna, NY. Before joining GE Global Research, he was a Researcher at the Information and Telecommunications Technologies Center (ITTC), University of Kansas. He has been the Principal Investigator for many DARPA and Lockheed Martin sponsored research projects including: Active Networking (DARPA/ITO), Information Assurance and Survivability Engineering Tools (DARPA/ISO), Fault Tolerant Networking (DARPA/ATO), and most recently, Connectionless Networks (DARPA/ATO), an energy aware sensor network project.

Descriere

This book bridges the divide between the fields of power systems engineering and computer communication through the new field of power system information theory.