Cantitate/Preț
Produs

Solving Polynomial Equation Systems IV: Volume 4, Buchberger Theory and Beyond: Encyclopedia of Mathematics and its Applications, cartea 158

Autor Teo Mora
en Limba Engleză Hardback – 31 mar 2016
In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Gröbner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugère (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.
Citește tot Restrânge

Din seria Encyclopedia of Mathematics and its Applications

Preț: 121347 lei

Preț vechi: 141102 lei
-14% Nou

Puncte Express: 1820

Preț estimativ în valută:
23222 24353$ 19364£

Carte tipărită la comandă

Livrare economică 08-22 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781107109636
ISBN-10: 1107109639
Pagini: 834
Ilustrații: 40 b/w illus.
Dimensiuni: 163 x 240 x 57 mm
Greutate: 1.45 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Encyclopedia of Mathematics and its Applications

Locul publicării:New York, United States

Cuprins

Part VII. Beyond: 46. Zacharias; 47. Bergman; 48. Ufnarovski; 49. Weispfenning; 50. Spear2; 51. Weispfenning II; 52. Sweedler; 53. Hironaka; 54. Hironaka II; 55. Janet; 56. Macaulay V; 57. Gerdt and Faugère; Bibliography; Index.

Notă biografică


Descriere

Covers extensions of Buchberger's Theory and Algorithm, and promising recent alternatives to Gröbner bases.