Sparse Modeling: Theory, Algorithms, and Applications: Chapman & Hall/CRC Machine Learning & Pattern Recognition
Autor Irina Rish, Genady Grabarniken Limba Engleză Hardback – dec 2014
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 304.24 lei 6-8 săpt. | |
CRC Press – 30 sep 2020 | 304.24 lei 6-8 săpt. | |
Hardback (1) | 423.78 lei 6-8 săpt. | |
CRC Press – dec 2014 | 423.78 lei 6-8 săpt. |
Din seria Chapman & Hall/CRC Machine Learning & Pattern Recognition
- 20% Preț: 498.35 lei
- 16% Preț: 261.58 lei
- 31% Preț: 428.57 lei
- 30% Preț: 366.80 lei
- 32% Preț: 588.13 lei
- 13% Preț: 304.24 lei
- 30% Preț: 262.00 lei
- 26% Preț: 595.38 lei
- 31% Preț: 258.34 lei
- 24% Preț: 516.16 lei
- 43% Preț: 264.86 lei
- 29% Preț: 270.48 lei
- 22% Preț: 343.34 lei
- 31% Preț: 257.40 lei
- 30% Preț: 263.14 lei
- 13% Preț: 304.24 lei
- 13% Preț: 305.63 lei
- 19% Preț: 480.84 lei
- 31% Preț: 478.33 lei
- 31% Preț: 849.98 lei
- 31% Preț: 281.19 lei
- 13% Preț: 298.19 lei
Preț: 423.78 lei
Preț vechi: 578.81 lei
-27% Nou
81.09€ • 85.32$ • 67.14£
Carte tipărită la comandă
Livrare economică 14-28 ianuarie 25
Specificații
ISBN-10: 1439828695
Pagini: 254
Ilustrații: 52 black & white illustrations, 7 colour illustrations
Dimensiuni: 156 x 234 x 18 mm
Greutate: 0.8 kg
Ediția:New.
Editura: CRC Press
Colecția CRC Press
Seria Chapman & Hall/CRC Machine Learning & Pattern Recognition
Public țintă
Professional Practice & DevelopmentCuprins
Introduction. Sparse Signal Recovery: Compressed Sensing. Sparse Optimization Algorithms. Sparse Regression. Sparse Graphical Models. Practical Applications. Beyond Variable Selection: Supervised Dimensionality Reduction.
Recenzii
—Computing Reviews, May 2015
"A comprehensive, clear, and well-articulated book on sparse modeling. This book will stand as a prime reference to the research community for many years to come."
—Ricardo Vilalta, Department of Computer Science, University of Houston
"This book provides a modern introduction to sparse methods for machine learning and signal processing, with a comprehensive treatment of both theory and algorithms. Sparse Modeling is an ideal book for a first-year graduate course."
—Francis Bach, INRIA - École Normale Supérieure, Paris
Descriere
Sparse modeling is an important issue in many applications of machine learning and statistics where the main objective is discovering predictive patterns in data to enhance understanding of underlying physical, biological, and other natural processes. This book surveys recent advances in statistics, machine learning, and signal processing related to sparse modeling. It provides a comprehensive introduction to recent developments in sparse modeling research, including the theoretical basis for sparse modeling, algorithmic approaches, and applications to computational biology, medicine, neuroscience, graphical model selection, and compressed sensing.