Spatio-Temporal Graph Data Analytics
Autor Venkata M. V. Gunturi, Shashi Shekharen Limba Engleză Hardback – 9 ian 2018
In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area.
This book will be useful as a secondary text for advanced-level students entering into relevant fields of computer science, such as transportation and urban planning. It may also be useful for researchers and practitioners in the field of navigational algorithms.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 750.25 lei 6-8 săpt. | |
Springer International Publishing – 4 iun 2019 | 750.25 lei 6-8 săpt. | |
Hardback (1) | 756.36 lei 6-8 săpt. | |
Springer International Publishing – 9 ian 2018 | 756.36 lei 6-8 săpt. |
Preț: 756.36 lei
Preț vechi: 945.44 lei
-20% Nou
Puncte Express: 1135
Preț estimativ în valută:
144.77€ • 150.56$ • 121.31£
144.77€ • 150.56$ • 121.31£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319677705
ISBN-10: 3319677705
Pagini: 100
Ilustrații: X, 100 p. 61 illus., 30 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.34 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
ISBN-10: 3319677705
Pagini: 100
Ilustrații: X, 100 p. 61 illus., 30 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.34 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
Cuprins
1 Introduction.- 2 Fundamental Concepts for Spatio-Temporal Graphs.- 3 Representational Models for Spatio-Temporal Graphs.- 4 Fastest Path for a Single Departure-Time.- 5 Advanced Concepts: Critical Time Point Based Approaches.- 6 Advanced Concepts: Bi-directional Search for Temporal Digraphs.- 7 Knowledge Discovery: Temporal Disaggregation in Social Interaction Data.- 8 Trend Topics: Engine Data Analytics.
Caracteristici
Describes a unique overarching model which can support a wide variety of spatio-temporal graph data Covers A* and bi-directional search for determining fastest paths over spatio-temporal graphs Introduces spatio-temporal graph datasets, such as engine measurement data Applications from the research covered in this book (navigational algorithms), can be used for Uber service and Google's autonomous cars